边缘计算是指靠近物或数据源头的一侧,采用网络、计算、存储、应用中心能力为一体的开放平台。网络边缘侧可以是从数据源到云计算中心之间的任意功能实体,这些实体搭载着融合网络、计算、存储、应用中心能力的边缘计算平台,为终端用户提供实时、动态和智能的服务计算。与像云端中进行处理和算法决策不同,边缘计算是将智能和计算推向更接近实际的行动,而云计算需要在云端进行计算,主要得差异体现在多源异构数据处理、带宽负载和资源浪费、资源限制和安全和隐私保护等方面。网络边缘数据涉及个人隐私,传统的云计算模式需要将这些隐私数据上传至云计算中心,这将增加泄露用户隐私数据的风险。在边缘计算中,身份认证协议的研究应借鉴现有方案的优势之处,同时结合边缘计算中分布式、移动性等特点,加强统一认证、跨域认证和切换认证技术的研究,以保障用户在不同信任域和异构网络环境下的数据和隐私安全。边缘计算能够缩短设备的响应时间,减少从设备到云数据中心的数据流量,以便在网络中更有效的分配资源。广东算力强大边缘计算**
开放和安全的使用边缘节点:安全横跨云计算和边缘计算,需要实施端到端的防护。由于更贴近万物互联的设备,网络边缘侧访问控制与威胁防护的广度和难度因此大幅提升。边缘侧安全主要包含设备安全、网络安全、数据安全与应用安全。此外,关键数据的完整性、保密性是安全领域需要重点关注的内容。如果把终端设备(例如交换机、路由器和基站)当作可共享接入的边缘节点,则需要解决许多问题:首先,需要定义边缘设备使用者和拥有者相关联的风险。其次,当设备用于边缘计算节点时,设备的原有的功能不能被损害。第三,边缘节点上的多重用户都需要将安全性作为首要关注指标。第四,需要向边缘节点的用户保证较低服务水平。结尾,需要考虑工作负载、计算能力、数据位置和迁移、维护成本和能源消耗,以便建立合适的定价模型。北京高性能边缘计算智慧校园边缘计算处理数据中心明显的优势:个性化。
边缘计算的大数据计算体系规模庞大.结点失效率高,因此还需要完成一定的自适应管理功能。系统必须能够根据数据量和计算的工作量估算所需要的结点个数,并动态地将数据在结点间迁移。以实现负载均衡;同时.结点失效时,数据必须可以通过副本等机制进行恢复,不能对上层应用产生影响。
计算层级内的优化技术,构建计算系统时.需要基于成本和性能来考虑,因此计算系统通常采用多层不同性价比的计算器件组成计算层次结构。边缘计算的计算规模是比较庞大的。
边缘节点上的通用计算能力:理论上,可以在位于边缘设备和云平台之间的某几个节点上完成边缘计算,包括接入点、基站、网关、业务节点、路由器、交换机等。例如,基站可以根据工作负载能力,执行数字信号处理(DSP)。但是在实践中,基站可能并不适合处理分析工作,因为DSP并不是为通用计算设计的。此外,这些节点是否可以执行除了现有工作之外的计算还不太清楚。由CAVIUM提供的OCTEONFusion®Family是一个小型“芯片上基站”单元,可扩展从6个到14个的内核,以支持32到300+的用户。这种基站可在非高峰时间使用多个计算中心的运算能力。编程语言需要考虑工作流中硬件的异构性和各种资源的计算能力。
这些计算设备可视作为一种平台,其中可执行许多不同功能的软件,包括IoT、基于IEC 61131-3的PLC、OPC UA和MQTT,还有与云端的接口、时序数据库、HMI以及数据分析软件。ISA-95 从L0到L2的功能和L3的部分功能,再加上新的IoT的分布式计算模型,都可以在边缘设备中执行。
将工业传感器网络与边缘设备连接的方案得到越来越多的认可和接受,今后在开放式的系统中会有较多的应用来取代PLC和DCS控制器。将边缘设备部署在工业网络联网和企业网络联网之中,其通信的功能有助于无缝地将IT与OT集成。 边缘计算的价值:应对数据和网络流量压力。黑龙江多网口边缘计算OED定制
边缘计算因更靠近设备端、用户端,这就注定了它在实时处理方面的独特优势。广东算力强大边缘计算**
边缘计算相比把所有视频上传到云中心,并让云中心去解决,这种方式能够更快的解决问题。物联网的发展让普通人家里的电子器件都变得活泼了起来,让这些电子器件连上网络是不够的,我们需要更好的利用这些电子元件产生的数据,并利用这些数据更好的为当前家庭服务。考虑到网络带宽和数据私密保护,我们需要这些数据很好能在本地流通,并直接在本地处理即可。我们需要网关作为边缘结点,让它自己消费家庭里所产生的数据。数据的来源有很多(可以是来自电脑、手机、传感器等任何智能设备)。广东算力强大边缘计算**