边缘计算简介:边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用中心能力为一体的开放平台,就近提供较近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将较大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。编程语言需要考虑工作流中硬件的异构性和各种资源的计算能力。北京小型化边缘计算电力巡检
云计算在提升共享资源和规模经济性方面类似于公用的电网,可以提供几乎没有限制的计算能力,并且可以按照需要提供数量巨大的存储量。另外,边缘计算正在变得普遍起来,这是一种低成本、高性能计算和通信的部署方法,导致计算和数据存储尽可能靠近产生数据的源头,这样来改善响应时间,增强数据与其生成源头的前后关系和相互关系,同时可按要求就地执行,而无需往返云端与就地。在计算机和工业自动化应用的历史上,处理计算往往都被放置在远离网络边缘的地方。直到还有许多应用还在这样做。现今的边缘设备可以是一台小的定位节点的计算机,或者是嵌入在传感器、执行器和其他设备中的SoC,具有特别高的性价比。将这些边缘设备部署在就地,使他们像移动的智能手机一样具有强大的计算能力和不高的成本。山东无风扇边缘计算园区识别开放和安全的使用边缘节点:安全横跨云计算和边缘计算,需要实施端到端的防护。
边缘计算就是要将网络距离,或者空间距离上的与用户临近的这些分开的、分散的资源进行统一,为应用提供计算、存储以及网络服务。结尾,我从仿生学的角度再进行一下边缘计算的理解。我们可以做这样的类比,将云计算和数据中心比作人的大脑,边缘计算就相当于人的神经末梢。当我们受到外界的刺激,如针刺到手,我们的手会第1时间下意识的收手,然后大脑才会意识到刚才我们被针刺到了手,这是因为将手收回的过程其实是由神经末梢直接处理的非条件反射。这种非条件反射的速度是大于人的反应速度的,这是为了避免遭受更大的伤害,这另外一点就是让大脑更加专注于处理更为高级的智慧。在未来万物互联的时代,随着资源的的数量增多,我们其实是不可能为每一个设备都提供一个“大脑”的,这时我们就需要边缘计算来帮助我们,让每一个设备拥有自己的“大脑”。
虽然边缘计算是一个新兴的领域,但是它拥有一些显而易见的优点,包括:1、实时或更快速的数据处理和分析:数据处理更接近数据来源,而不是在外部数据中心或云端进行,因此可以减少迟延时间。2、较低的成本:企业在本地设备的数据管理解决方案上的花费比在云和数据中心网络上的花费要少。3、网络流量较少:随着物联网设备数量的增加,数据生成继续以创纪录的速度增加。因此,网络带宽变得更加有限,让云端不堪重负,造成更大的数据瓶颈。4、更高的应用程序运行效率:随着滞后减少,应用程序能够以更快的速度更高效地运行。削弱云端的角色也会降低发生单点故障的可能性。边缘分析与现有流程不同,由于边缘分析将在用户驱动的应用程序中实现。
许多供应商也已经迈出了使用软件解决方案实现边缘计算的第1步。例如,诺基亚针对移动边缘计算(MEC)的软件解决方案旨在为基站站点提供边缘计算能力。同样,思科的IOx为其集成的服务路由器提供了一个边缘计算环境。这些解决方案应用于特定硬件,因此不适合部署在异构环境中。软件解决方案面临的一个挑战是如何开发跨越不同环境的可移植的解决方案。某些公司正在研究升级边缘节点,以支持通用计算需求。例如,可以升级无线家庭路由器以支持额外的计算任务。英特尔的SmartCellPlatform使用虚拟化技术,支持额外的计算任务。通用CPU替换专属DSP提供了另一种解决方案,但却需要巨大的投资。目前,边缘计算市场仍然处于初期发展阶段。云南无风扇边缘计算AGV
若想更好的在边缘节点上部署应用程序的工作负载,需要考虑的方面:部署策略。北京小型化边缘计算电力巡检
边缘计算相比把所有视频上传到云中心,并让云中心去解决,这种方式能够更快的解决问题。物联网的发展让普通人家里的电子器件都变得活泼了起来,让这些电子器件连上网络是不够的,我们需要更好的利用这些电子元件产生的数据,并利用这些数据更好的为当前家庭服务。考虑到网络带宽和数据私密保护,我们需要这些数据很好能在本地流通,并直接在本地处理即可。我们需要网关作为边缘结点,让它自己消费家庭里所产生的数据。数据的来源有很多(可以是来自电脑、手机、传感器等任何智能设备)。北京小型化边缘计算电力巡检