人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及机构和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。人工智能作为新一轮科技**和产业变革的中心力量。浙江NPU人工智能视频分析
医疗人工智能产业上游主要是为行业提供基础技术支持的行业,如医疗数据挖掘、算法等,典型企业有碳云智能、连心医疗、大数医达。下游主要为医疗人工智能技术的应用层,主要的应用场景有医学影像、虚拟助手、药物研发、健康管理、疾病风险预测、病历/文献分析,表示企业包括科大讯飞、华大基因、图玛深维、博奥生物等。而在医疗人工智能技术行业,我国涌现出了一大批企业,这些企业开发出了针对医疗行业应用的各种医疗人工智能产品,如智能影像辅助诊疗系统、导诊机器人、语音电子病历等。在下游需求方面,中国医疗行业长期存在优良医生资源分配不均,诊断误诊漏诊率教改,医疗费用成本过高,医生资源供需缺口大等问题。而在中国医疗改变逐步推进,分级诊疗逐步落地的过程中,这种问题更加突出。在此背景下,人工智能将在各种场景的共同作用下,提高医疗服务水平,改善现有现状。根据统计,我国医院部署人工智能应用并成熟使用的占比不足50%,仍有近50%的医院并未尝试接入人工智能技术。四川VPU人工智能视频分析人工智能有时被称为机器智能。
随着这个领域带来了如此多的机会,在未来几年里看到人工智能在各个方面的发展也就不足为奇了。1、电子商务:这一领域的人气空前高涨。即使是电子商务部门正在解决的基本需求,它也时不时地出现新的特点。据预测,人工智能将在这里看到比以前多得多的变化。它比较可能有一个机器人,会问用户它可以如何帮助。这个机器人会考虑到以前的搜索和购买。未来几年,机器人可能会提供建议。总而言之,电子商务有望转向语音技术。2、自动化:汽车自动驾驶不再是梦想。但是,这项技术还没有发展到汽车可以在没有人为干扰的情况下行驶的程度。在这里,人工智能可以看到未来的变化。几年后,你比较有可能看到车辆,让你看到目的地,而你甚至不需要参与一点。3、教育类:不用说,教育有着特殊的作用。人工智能使人们可以接受虚拟教育,也可以获得前所未有的工具。未来几年,学习分析技术支持的智能教学系统将被普遍采用。人工智能可以被部署到这样一个程度,教育将看到一个完全不同的面貌。
人工智能的应用领域:问题求解。人工智能的第1大成就是下棋程序,在下棋程度中应用的某些技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。现在的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。人工智能已经成为一种常规技术。
人工智能影响:(1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类结尾认识自身智能的形成。(2)人工智能对经济的影响。**系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,现在,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此比较可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的矛盾及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。当今时代,人工智能已经是主要发展领域之一。四川VPU人工智能计算机视觉
然语言的处理是人工智能技术应用于实际领域的典型范例。浙江NPU人工智能视频分析
80年代符号人工智能停滞不前,许多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。许多研究者开始关注子符号方法解决特定的人工智能问题。自下而上,接口AGENT,嵌入环境(机器人),行为主义,新式AI机器人领域相关的研究者,如RODNEYBROOKS,否定符号人工智能而专注于机器人移动和求生等基本的工程问题。他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能中使用控制理论。这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。计算智能80年代中DAVIDRUMELHART等再次提出神经网络和联结主义.这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。浙江NPU人工智能视频分析