PCB基本参数
  • 品牌
  • 赛孚
  • 型号
  • PCB多层板
  • 表面工艺
  • 沉金板
  • 基材类型
  • 刚性线路板
  • 基材材质
  • 有机树脂类覆铜板
  • 层数
  • 多层
  • 绝缘树脂
  • 环氧树脂(EP)
  • 增强材料
  • 玻纤布基
  • 阻燃特性
  • VO板
  • 最大版面尺寸
  • 800*800
  • 厚度
  • 1.6
  • 介质常数
  • 4.2
  • 成品板翘曲度
  • 0.75
  • 产地
  • 深圳
  • 基材
  • 机械刚性
  • 刚性
  • 绝缘材料
  • 有机树脂
  • 绝缘层厚度
  • 常规板
  • 是否跨境货源
  • 数量
  • 10000
  • QQ
  • 1036958619
  • 厂家
  • 深圳市赛孚电路科技有限公司
PCB企业商机

    在PCB设计过程中,布局与布线是两个至关重要的环节。合理的布局能够确保元器件之间的电磁兼容性,减少信号干扰;而精确的布线则能保障信号的快速传输与稳定性。设计师需要借助专业的EDA(电子设计自动化)工具,进行高效的电路设计与仿真,以确保PCB能够满足实际应用中的各种严苛要求。随着智能制造的兴起,PCB行业正经历着前所未有的变革。自动化、智能化生产线的应用,提高了PCB的生产效率与品质。例如,激光直接成像技术(LDI)的引入,使得电路图形的制作更加精确;而自动化光学检测(AOI)设备的应用,则确保了每一块PCB板的质量都符合标准。这些先进技术的应用,不仅降低了生产成本,也提升了PCB行业的整体竞争力。不同类型的PCB适用于不同的应用场景,例如消费电子产品、汽车和航空航天等。电路板 通讯振子板印制

PCB设计的一般原则需要遵循哪几方面呢?

1.布局

首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。ZUI,根据电路的功能单元,对电路的全部元器件进行布局。

在确定特殊元件的位置时要遵守以下原则:

(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

(3)重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。

(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

(5)应留出印制扳定位孔及固定支架所占用的位置。 精密PCB电路板制作PCB的层叠结构是根据设备性能和设计需求来决定的。

PCB电路板为什么要做阻抗?本文首先介绍了什么是阻抗及阻抗的类型,其次介绍了PCB线路板为什么要做阻抗,ZUI阐述了阻抗对于PCB电路板的意义,具体的跟随小编一起来了解一下。


什么是阻抗?


在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧。


阻抗类型


(1)特性阻抗


在计算机﹑无线通讯等电子信息产品中, PCB的线路中的传输的能量, 是一种由电压与时间所构成的方形波信号(square wave signal, 称为脉冲pulse),它所遭遇的阻力则称为特性阻抗。




(2)差动阻抗


驱动端输入极性相反的两个同样信号波形,分別由两根差动线传送,在接收端这两个差动信号相減。差动阻抗就是两线之間的阻抗Zdiff。




(3)奇模阻抗


两线中一XIAN對地的阻抗Zoo,两线阻抗值是一致。




(4)偶模阻抗


驱动端输入极性相同的两个同样信号波形, 將两线连在一起时的阻抗Zcom。




(5)共模阻抗


两线中一XIAN对地的阻抗Zoe,两线阻抗值是一致,通常比奇模阻抗大。



FPC柔性线路板常见的一些工艺知识


1、FPC是柔性的线路板可以折叠弯曲,一般用做翻盖手机的上下部分连接、电池的保护电路等。


为了保证FPC的平整度生产厂家出货之前一般会对FPC进行压平处理,并且由于FPC是柔性的所以很难采用抽真空包装。所以在传递和使用过程种注意保证FPC的平整度尽量不要折弯。


2、FPC一般为1~2层,多层的FPC比较少见。FPC的基材和Cover Layer一般采用聚酰亚胺,基材和铜箔之间压和成一体。有些FPC的厚度以铜箔的厚度标识如1.5OZ,2.0OZ。


与PCB不同的是Cover Layer在铜箔上的开口一般小于铜箔面积而PCB上Solder Mask面积一般大于铜箔的面积。需要注意的一点就是FPC基材和铜箔之间靠树脂粘和,有些情况下树脂会溢出造成焊盘污染导致漏焊。


3、FPC的废边(Waste Area,没有电路的边缘部分)部分一般采用2种工艺。一种叫Solid Copper,既采用整体的铜箔覆盖。



PCB的设计和制造直接影响着电子设备的性能。


三.HDI板的优势

这种PCB在突显优势的基础上发展迅速:

1.HDI技术有助于降低PCB成本;

2.HDI技术增加了线密度;

3.HDI技术有利于使用先进的包装;

4.HDI技术具有更好的电气性能和信号有效性;

5.HDI技术具有更好的可靠性;

6.HDI技术在散热方面更好;

7.HDI技术能够改善RFI(射频干扰)/EMI(电磁干扰)/ESD(静电放电);

8.HDI技术提高了设计效率;


四.HDI板的材料

对HDI PCB材料提出了一些新的要求,包括更好的尺寸稳定性,抗静电移动性和非胶粘剂。HDI PCB的典型材料是RCC(树脂涂层铜)。RCC有三种类型,即聚酰亚胺金属化薄膜,纯聚酰亚胺薄膜,流延聚酰亚胺薄膜。

RCC的优点包括:厚度小,重量轻,柔韧性和易燃性,兼容性特性阻抗和优异的尺寸稳定性。在HDI多层PCB的过程中,取代传统的粘接片和铜箔作为绝缘介质和导电层的作用,可以通过传统的抑制技术用芯片抑制RCC。然后使用非机械钻孔方法如激光,以便形成微通孔互连。


随着HDI技术的发展,HDI PCB材料必须满足更多要求,因此HDI PCB材料的主要趋势应该是:

1.使用无粘合剂的柔性材料的开发和应用;

2.介电层厚度小,偏差小;

3 .LPIC的发展;

4.介电常数越来越小;

5.介电损耗越来越小;

6.焊接稳定性高;

7.严格兼容CTE(热膨胀系数);


多层PCB在解决信号干扰问题上具有优势。电路板双层抗氧化板定做

在PCB设计过程中,合理的接地和电源分配策略对于减少电磁干扰和提高信号完整性至关重要。电路板 通讯振子板印制

HDI多层板技术发展在未来几年内的发展重点是:导电电路宽度/间距更加微细化、导通孔更加微小化、基板的绝缘层更加薄型化。


这一发展趋势给基板材料制造业提出了以下两大方面的重要课题:如何在HDI多层板的窄间距、微孔化不断深入发展的情况下,保证它的基板绝缘可靠性、通孔可靠性;如何实现高性能CCL的更加薄型化。


第YI方面课题归结为基板材料的可靠性问题,它由CCL基本性能(包括耐热性、耐离子迁移性、耐湿性、耐TCP性、介电性等)与基板加工性(微孔加工性、电镀加工性)两方面性能的综合体现,而所提及的CCL各方面具体性能都是与CCL用树脂性能相关。


所谓与树脂的相关性,就是环氧树脂应达到3个层的要求:要实现对树脂所需的性能指标;要在一些条件变化下确保这些性能的稳定;要有与其它高性能树脂的共存性好(即互溶性、或反应性、或聚合物合金性好)。


实现CCL薄型化中对其所用的环氧树脂性能要求的技术含量较高。CCL薄型化技术主要是要解决板的刚性提高(便于工艺操作性,保证机械强度等)、翘曲变形减小的突出问题,薄型化CCL在工艺研发中,除了在半固化片加工工艺上需要有所改进、创新外,于树脂组成和增强材料技术也是十分关键的方面。 电路板 通讯振子板印制

与PCB相关的**
信息来源于互联网 本站不为信息真实性负责