首页 >  电子元器 >  成都环保电池管理系统推荐厂家 真诚推荐「成都中璞电子供应」

电池管理系统企业商机

    只需要让空气流经电池表面带走动力电池所产生的热量,达到对动力电池组散热的目的。根据通风措施的不同,空冷式又有自然对流散热和强制通风散热两种方式。自然对流散热不依靠外部附加的强制通风措施(如加风机等),只是通过电池包内部流体自身因温度变化而产生的气流进行冷却散热的系统。强制对流冷却散热系统是在自然对流散热系统的基础上加上了相应的强制通风技术的散热系统。当前动力电池空冷式散热主要有串联式和并联式两种系统。但该种方式效果较差,且很难达到较高的电池均温性。串联风冷散热/并联风冷散热液冷式散热系统动力电池的液冷式散热系统是指制冷剂直接或间接地接触动力电池,然后通过液态流体的循环流动把电池包内产生的热量带走达到散热效果的一种散热系统。制冷剂可以是水、水和乙二醇的混合物、矿物质油和R134a等,这些制冷剂拥有较高的导热率,可以达到较好的散热效果。当前动力电池的液冷技术也拥有了相当成熟的技术,在电动汽车的散热系统中也有了相对普遍的应用,比如特斯拉电池包就是采用水和乙二醇的混合物的液冷方式散热,宝马i3采用R134a进行散热。随时预报混合动力汽车储能电池还剩余多少能量或者储能电池的荷电状态。成都环保电池管理系统推荐厂家

    能够提供高速的电压转换和出色的抗噪性,但往往需要更大的芯片面积。SARADC是可以提供数据采集速度、精度、强度和抗电磁干扰能力组合的较好选择。IC设计人员也会倾向于delta-sigmaADC,因为它们通常需要较小的芯片面积且相对容易实现。但由于使用了抽取滤波器,它们的速度往往较慢,这会降低采样率和数据采集速度。采用delta-sigmaADC时的另一个考虑因素是在受到EMI干扰时趋于饱和,这可能导致在准确报告电芯电压时出现延迟(通常为三个完整的转换周期)。单个电池的接口由AFE管理,该AFE包括输入缓冲器、电平移位器和故障检测电路。当电池开始连接到BMS时,AFE是处理热插拔瞬变的关键。BMSIC采用全差分AFE设计,可在不影响相邻电池测量的情况下测量负输入电压(±5V),这在需要总线互联的系统中十分有利。为提高瞬态条件下的强度,电池电压输入端增加了一个外部低通滤波器。输入滤波的设计经过优化,在不影响速度或精度的同时获得非常大的EMI和热插拔抗扰度。相比之下,使用双极而非电荷耦合AFE的集成电路的精度和长期偏移会因为外部输入滤波器选择的组件值而大幅度降低。相结合,使锂电池组管理器具有快速的数据采集能力、强度和精度。西安新型节能电池管理系统批发价格BMS实时采集、处理、存储电池组运行过程中的重要信息。

    液冷方案的电池包还可以和车体的发动机制冷液或车载空调进行连接,形成整车级的综合热设计方案。空调制冷方式原理示意图如下图所示。把模块沉浸在电介质的液体中的直接液冷方案,介质必须绝缘,以免发生短路。出于价格考虑,硅油是当前重点考虑的液体绝缘冷却介质。除了冷却效应,使用硅油直接冷却还可以起到很好的阻燃作用,避免汽车在出现事故时由于电池局部高温而发生爆燃。浸没式冷却虽然效率高且控制得当时更加安全,但由于本书第四章所述的缺陷,目前尚未规模化商用。液冷设计的动力电池与常规3C产品方法并无本质区别。其使用的优化设计方法如流道设计、流量确定、冷板材质选择、流动截面形状设计等基本相通。(PhaseChangeMaterial,PCM)对热量产生的温度反应连接起来。PCM的特征是在极小的温度变化范围内可以收大量热,在需要维持恒温的设备中经常使用(如保暖服装,电器防热外壳、保鲜盒、保温盒、取暖器、储能炊具等[12])。利用PCM进行电池冷却原理是:当电池进行大电流放电时,电池释放大量热,PCM吸收电池放出的热量,自身发生相变,而维持电池在相变温度附近。此过程是系统把热量以相变热的形式储存在PCM中。当电池温度下降到PCM熔点以下时。

    热泵技术是未来主流新能源汽车空调制热耗电高,续航里程有影响。传统汽车利用发动机机械能驱动压缩器制冷,利用发动机余热制热,空调系统的运行对整车的性能影响较小。相比于传统汽车,新能源汽车空调制冷和制热都需要电池包提供能量。众所周知,新能源汽车目前一个突出的缺点是续航里程较短,而空调系统持续耗电会减少汽车的续航里程,极大地影响了整车的性能。①电动汽车空调制冷过程的压缩机需要电池包提供电能。新能源汽车空调制冷的压缩机动力源由燃油发动机提供变成电动车自带的电池包提供,因此采用的是电动压缩机,而制热则由原先的发动机余热提供变成由电池包提供电能转换成热能来提供。②传统汽车空调制热主要利用发动机余热,新能源汽车的制热系统现在主要采用电加热来实现。对于传统汽车,由暖风水箱吸收发动机运行中产生的大量热量,再通过鼓风器和风道将暖风吹至车厢内,以实现供暖。这一方面给车厢提供了制热的效果,另一方面也降低了发动机运行的温度。对于新能源汽车,采用电加热设备制热,其中较常用的是PTC加热器。PTC是一种直热式电阻材料,具有正温度敏感性,它的电阻随着温度的变化而急剧变化,外界温度降低,PTC的电阻也随之减少。电池管理系统一般指BMS电池系统。

    但是这样也增加了系统的安全性,可以在单个电池上进行平衡控制和过充保护。图1电池测量系统电池算法模块算法模块以可分为SOC估计模块和SOH预测模块两部分。SOC是新能源汽车电池当前的电荷状态,表现为额定电量的百分比。准确的估计电池SOC信息,可以计算汽车还能行驶的距离,避免过充,过放的危险。SOC可以被温度,工作周期,放电率影响。因此,BMS应该包含一个基于上述特征进行SOC推论的模型。SOC作为BMS较重要的输出结果,有几种基于电池电压,电流,温度进行SOC预测的算法。当然,较原始的获得方式是直接测量,测量开路电压或者加载电池的电压,然后通过预存的放电特性推导SOC。然后这种方法在锂电池上表现不佳,因为锂电池放电曲线的中间区域是一条平滑的曲线,稍微的测量误差,经过时间累积都会不断放大,更不用说直接测量没有考虑温度和老化因素的影响。图2SOC和SOH预测能力估计模块在SOC和SOH预测以后,BMS需要推断较大的充放电电流。BMS把这个模块的结果输出给ECU单元进行电池电流控制。这样就避免了电池遭受承受限制范围之外的充放电。均衡模块因为电池生产工艺的影响,电池个体之间会有差异,规定容量较大相差15%是可以接受的范围。电动汽车电池管理系统功能包括:电池物理参数实时监测、在线诊断与预警、均衡管理和热管理等。山东分布式电池管理系统哪个牌子好

如何构建电池管理系统。成都环保电池管理系统推荐厂家

    则认为其不再适用于车辆牵引,但电池可能仍保持其原始容量的80%。因此可以将车辆使用过的旧电池组以指定的剩余寿命迁移到其它需自耗电池的应用中,进行二次使用。对汽车制造商而言,成功的BMS需要在系统设计初期就仔细选择BMSIC。制造商需要了解在整个操作环境和车辆使用寿命的过程中,特别是高电压电池和逆变器噪声等恶劣的电磁干扰(EMI)环境下,各个IC供应商所提供的产品测量精度与稳定性之间的差异。准确的电压基准是所有BMSIC的重点。芯片所采用的参考拓扑类型各不相同,带隙结构是非常常用的,它们在精度与芯片面积之间,以及整个温度范围内的精度都做了较好的权衡。例如,ISL78714锂电池组管理IC使用了精确的带隙基准设计,这一设计具有良好的应用记录,并非常适合要求苛刻的汽车应用。该技术稳定、成熟、特点鲜明,并经过多年应用及优化。准确的电压基准直接影响汽车制造商的保修和经营成本指标,是设计人员计算车辆电池寿命时考虑的一个关键因素。除了精度基准,用于测量精度的另一个关键功能模块是ADC,主电池电压测量模块。两种流行且常用的ADC类型是逐次逼近寄存器(SAR)和delta-sigma。在这两种技术中,SAR具有极快的采样率。成都环保电池管理系统推荐厂家

与电池管理系统相关的文章
与电池管理系统相关的问题
与电池管理系统相关的搜索
信息来源于互联网 本站不为信息真实性负责