首页 >  电子元器 >  成都新型节能电池管理系统研发厂家 欢迎来电「成都中璞电子供应」

电池管理系统企业商机

    结合电子产品运行场景,电池热管理系统的目标可以细化如下:保证单体电池处于适宜的工作温度范围,能够在高温环境中将热量及时转移、低温环境中迅速加热或者保温减小单体电池内部不同部位之间的温度差异,保证单体电池的温度分布均匀;保持电池组内部不同电池的温度均衡,避免电池间的不平衡而降低性能;考虑极端情况,消除因热失控引发电池失效甚至等危险;满足电动汽车轻型、紧凑的要求,成本低廉、安装与维护简便;有效通风,保证电池所产生的潜在有害气体能及时排出,保证使用电池安全性;温度等相关参数实现精确灵敏的监控管理,制定合理的异常情况应对策略。任何方案的设计都需要先明确输入信息或限制条件,其中基础的、必不可少的信息有如下三类:1.电池自身的发热速率:热管理方案的原理是通过一定手段将电池发出的热量转移到合适的位置来控制电池温度,电池发热速率决定管理方案的热量转移效率要求;2.电池的温度要求:不同电池对温度敏感性不同,而温度是热管理系统控制的主要参数。3.电池的热物理性质:在相同的产热速率和热管理方案下,电池本身的导热系数、密度和比热容等电池热物性参数对电池温度表现有巨大影响。电池热管理系统的设计。不同电芯类型,对管理系统的要求一般不太一样。成都新型节能电池管理系统研发厂家

    新能源动力电池包PACK做为新能源汽车上的关键部件,新能源动力电池包PACK气密性测试显得尤其重要,新能源动力电池包PACK防水等级为IP68,很多客户考虑用传统压力法解决新能源动力电池包PACK气密性检测,但压力法受体积、材质、温度、热交换、测试压力、泄漏量等因素影响并不适用于动力电池包PACK气密检测,针对这一情况我司将常压累积氦检经过反复实验并成功应用于新能源动力电池包PACK气密性检。常压累积氦检是无损检测,能克服压力法的影响因素,并且精度是压力法的100倍以上,非常适用于新能源动力电池包PACK气密性检测。常压累积氦检原理是向检测产品内充入一定压力的氦气,若工件有漏,气体将沿漏点泄漏到检测罩内。检漏仪将从检测罩内取样气体信号,从而分辨出工件气体泄漏量,判断工件是否有漏,常压累积氦检解决泄漏测试在压力法和真空氦检测之间的部件测试,即漏率在10-2cc/s到10-5cc/s之间的测试。安徽分布式电池管理系统哪家好电池管理系统(BMS)好像挺火的,尤其是电动汽车电池管理系统。

    热泵技术是未来主流新能源汽车空调制热耗电高,续航里程有影响。传统汽车利用发动机机械能驱动压缩器制冷,利用发动机余热制热,空调系统的运行对整车的性能影响较小。相比于传统汽车,新能源汽车空调制冷和制热都需要电池包提供能量。众所周知,新能源汽车目前一个突出的缺点是续航里程较短,而空调系统持续耗电会减少汽车的续航里程,极大地影响了整车的性能。①电动汽车空调制冷过程的压缩机需要电池包提供电能。新能源汽车空调制冷的压缩机动力源由燃油发动机提供变成电动车自带的电池包提供,因此采用的是电动压缩机,而制热则由原先的发动机余热提供变成由电池包提供电能转换成热能来提供。②传统汽车空调制热主要利用发动机余热,新能源汽车的制热系统现在主要采用电加热来实现。对于传统汽车,由暖风水箱吸收发动机运行中产生的大量热量,再通过鼓风器和风道将暖风吹至车厢内,以实现供暖。这一方面给车厢提供了制热的效果,另一方面也降低了发动机运行的温度。对于新能源汽车,采用电加热设备制热,其中较常用的是PTC加热器。PTC是一种直热式电阻材料,具有正温度敏感性,它的电阻随着温度的变化而急剧变化,外界温度降低,PTC的电阻也随之减少。

    选取50只铝塑膜锂离子电池组成串联电池组(35Ah、167V),铝塑膜锂离子电池组实验条件见表2。表2电池组实验条件。表3铝塑膜锂离子电池单体结构的热特性参数本文中的Bernardi生热率模型采用电池性能模型计算电池端电压、电流以及剩余电量SOC,电池的开路电压函数(电动势函数)为f(SOC,θ),当剩余电量SOC为,温度在10~30℃时,本文方法拟合电池电动势结果如图5所示,同时与实际电动势趋势值对比。本文方法拟合电动势结果与电池实际电动势数值趋势基本吻合,误差较小,说明本文方法在特定热度环境下,拟合电池电动势的精度较高,为电池热管理提供精细的数据,实施有效热管理。采用本文方法模拟电池组以2C放电倍率持续放电时温度提升的过程,结果如图6所示,并与电池组放电时实际升温数据对比。采用本文方法模拟电池组放电过程中的升温过程与电池组的实际升温过程趋势一致,*存在微小差别,实验进行到500s时,电池组的实际温度为20℃,本文方法模拟温度为℃,误差为℃;实验进行到1000s时,电池组的实际温度为℃,本文方法模拟温度为℃,误差为℃。在500~1000s内,误差均值为℃。上述数据表明,电池组放电时,用本文方法可高精度模拟电池组升温过程,可准确预估电池发热量。电池热管理主要是保证电池处在一个合理的温度范围,保证充放电功能处于比较好状态。

    则认为其不再适用于车辆牵引,但电池可能仍保持其原始容量的80%。因此可以将车辆使用过的旧电池组以指定的剩余寿命迁移到其它需自耗电池的应用中,进行二次使用。对汽车制造商而言,成功的BMS需要在系统设计初期就仔细选择BMSIC。制造商需要了解在整个操作环境和车辆使用寿命的过程中,特别是高电压电池和逆变器噪声等恶劣的电磁干扰(EMI)环境下,各个IC供应商所提供的产品测量精度与稳定性之间的差异。准确的电压基准是所有BMSIC的重点。芯片所采用的参考拓扑类型各不相同,带隙结构是非常常用的,它们在精度与芯片面积之间,以及整个温度范围内的精度都做了较好的权衡。例如,ISL78714锂电池组管理IC使用了精确的带隙基准设计,这一设计具有良好的应用记录,并非常适合要求苛刻的汽车应用。该技术稳定、成熟、特点鲜明,并经过多年应用及优化。准确的电压基准直接影响汽车制造商的保修和经营成本指标,是设计人员计算车辆电池寿命时考虑的一个关键因素。除了精度基准,用于测量精度的另一个关键功能模块是ADC,主电池电压测量模块。两种流行且常用的ADC类型是逐次逼近寄存器(SAR)和delta-sigma。在这两种技术中,SAR具有极快的采样率。实时采集电动汽车蓄(应该为动力电池组)电池组中的每块电池的端电压和温度。成都新型节能电池管理系统研发厂家

采集模组的输出端与BMS电池管理系统的输入端连接,所述BMS电池管理系统的输出端与控制模组的输入端连接。成都新型节能电池管理系统研发厂家

    电池组本身故障是指过压(过充)、欠压(过放)、过电流、超高温、内短路故障、接头松动、电解液泄漏、绝缘降低等。另外还包括电池组、高压电回路、热管理等各个子系统的传感器故障、执行器故障(如接触器、风扇、泵、加热器等),以及网络故障、各种控制器软硬件故障等。4、电池安全控制与报警包括热系统控制、高压电安全控制。BMS诊断到故障后,通过网络通知整车控制器,并要求整车控制器进行有效处理(超过一定阈值时BMS也可以切断主回路电源),以防止高温、低温、过充、过放、过流、漏电等对电池和人身的损害。5、充电控制BMS中具有一个充电管理模块,它能够根据电池的特性、温度高低以及充电机的功率等级,控制充电机给电池进行安全充电。6、电池均衡不一致性的存在使得电池组的容量小于组中较小单体的容量。电池均衡是根据单体电池信息,采用主动或被动、耗散或非耗散等均衡方式,尽可能使电池组容量接近于较小单体的容量。7、热管理根据电池组内温度分布信息及充放电需求,决定主动加热/散热的强度,使得电池尽可能工作在较适合的温度,充分发挥电池的性能。8、网络通讯BMS需要与整车控制器等网络节点通信。同时,BMS在车辆上拆卸不方便。成都新型节能电池管理系统研发厂家

与电池管理系统相关的文章
与电池管理系统相关的问题
与电池管理系统相关的搜索
信息来源于互联网 本站不为信息真实性负责