陶瓷的好处:金属与烤瓷的膨缩率:金属与瓷在高温下结合,两者从高温到室温每个温度段的冷收缩若差异较大,冷却过程中即会使烤瓷发生隐裂、脱落。当然,两者的收缩率不可能完全一致,一般金属均略大于陶瓷,其差值应在1.08×10-6/℃以内。因此,对金属和瓷粉都应有所选择,并非任何一种合金均能与瓷粉相匹配。一般来说,同一个厂商生产的金属和瓷粉的匹配性较好。另外,多次烧结可使陶瓷中白榴石晶体的含量增加,热膨胀系数增大,从而使金瓷热膨胀系数失配。 (2)金属与烤瓷的加热温度:由于瓷在高温烧结中会产生蠕变,同样金属在高温下发生软化易受蠕变的作用而变形,因此,金属的融点应比烤瓷的烧结温度高150~260℃。对于融点较低的合金,应当增加其厚度以抵抗烤瓷的蠕变。 陶质焊接衬垫在压力容器制造领域广泛应用以及提高焊接制造质量具有重要意义。电焊陶瓷衬垫哪家好
陶瓷衬垫焊通用工艺:1.焊丝的角度单面平焊时可以采用左焊法,也可以采用右焊法。右焊法时熔敷金属的厚度较薄,反面成型较美观,但焊强会挡住操作者的视线,影响对熔池前端的观察。采用左焊法时,焊接速度要比右焊法慢,操作者能较好的看到熔池的前方。立焊时为防止铁水,焊丝处于下倾状态,如图6所示,同时焊丝左右摆动,如图7所示,此角度应不小于5o。与水平角度不当,易造成正面和背面焊缝成型不良。焊丝左、右摆动角度不当,易造成焊缝边缘熔合不良和夹渣现象。焊丝偏上会造成焊缝下侧未熔合,偏下会使背面焊缝过分下垂。焊丝略向前倾是为了使铁水的重力、表面张力和电弧吹力三者保持平衡,使铁水不过分前淌,保证焊缝反面有良好的形成。耐高压陶瓷衬垫厂家推荐采用短弧焊接,并选用较小直径焊接电流,以及适当的运条方法。
陶质衬垫衬垫毛坯烧制成型:压制好的衬垫毛坯,在高温加热炉中按照不同升温阶段进行加热煅烧。在高温加热阶段定时检查毛坯烧结成型情况,探索可以烧制成功的较高温度下限。通过大量烧制工艺探索,较后优化出衬垫质量较好的原材料配比为:88%黄土+8%石英石+2.3%冰晶石+1.2%ZrO2+0.5%TiO2。烧制成型的陶质焊接衬垫表面质量良好,不收缩和变形,表面致密光滑无孔洞,见图3;常规高岭土配方烧制的衬垫见图4。图3与图4的衬垫相比,新烧制的陶质焊接衬垫外观颜色为棕灰色,而厂家衬垫为灰白色,二者颜色有一些差异,这对于焊接工艺(而不是作为装饰材料)来说并无任何影响。并且,衬垫烧制工艺探索发现,在较优原材料配方下的陶质焊接衬垫较高烧制温度下限降低到只有1050℃,这不但降低了高温加热炉设备要求,而且节省了能源消耗,降低了陶质焊接衬垫的烧制工艺成本。
气体保护焊及陶瓷衬垫的用法:1.操作要领CO2单面焊是一种技术性很强的焊接方法。尽管影响焊缝双面成型的因素很多,如设备性能、气候、施工空间环境、网路电压、人员素质等,但更重要的是人员素质。焊工素质表现在认知面(理论水平)、技能技巧、熟练程度和工作态度等方面。因此,即便使用了合适的焊接规范参数,想要获得满意的焊缝质量,还必须掌握准确的操作方式和技术要领。2.燃弧点的位置采用单面焊时,燃弧的位置十分重要,如图3所示。由于进行CO2单面焊时,电弧的电流密度较大,在熔池前端的母材上形成半圆孔,随着电弧的前进,熔化金属不断填满此半圆孔。操作时必须使燃弧点处于熔池中心,如果燃弧点太靠前,如图3中B点的位置,则会使铁水过早前淌,使熔宽减小,严重时导致两底边未熔合。若燃弧点太靠后,如图3中A点,使铁水前淌过缓,会增加熔宽,焊缝下垂过多,且容易使焊缝正面形成中间高、两边低的形式,这样在上面一层焊接时会导致两边夹渣。正常的打底焊成形应是焊缝反面增高适当,焊缝正面为中间低,两边成弧状过渡。减少焊逢金属的熔敷量。坡口面的朝口原则上由分段建造工艺确定。
陶瓷衬垫焊接工艺:单面平焊时可以采用左焊法,也可以采用右焊法,如图5所示。右焊法时熔敷金属的厚度较薄,反面成型较美观,但焊强会挡住操作者的视线,影响对熔池前端的观察。采用左焊法时,焊接速度要比右焊法慢,操作者能较好的看到熔池的前方。立焊时为防止铁水,焊丝处于下倾状态,如图6所示,同时焊丝左右摆动,如图7所示,此角度应不小于5º。与水平角度不当,易造成正面和背面焊缝成型不良。焊丝左、右摆动角度不当,易造成焊缝边缘熔合不良和夹渣现象。 横焊时焊丝的位置如图8所示。焊丝偏上会造成焊缝下侧未熔合,偏下会使背面焊缝过分下垂。焊丝略向前倾是为了使铁水的重力、表面张力和电弧吹力三者保持平衡,使铁水不过分前淌,保证焊缝反面有良好的形成。高温加热阶段定时检查毛坯烧结成型情况,探索可以烧制成功的最高温度下限。上海电焊陶瓷衬垫
避免焊条熔化金属过多地聚集在某一点上形成焊瘤和焊缝上部咬边等缺陷。电焊陶瓷衬垫哪家好
熔滴短路过渡时的飞溅 短路过渡时的飞溅形式很多。飞溅总是发生在短路小桥破断的瞬时。飞溅的大小决定于焊接条件,它常常在很大范围内改变。产生飞溅的原因目前有两种看法,一种看法认为飞溅是由于短路小桥电的结果。当熔滴与熔池接触时,熔滴成为焊丝与熔池的连接桥梁,所以称为液体小桥,并通过该小桥使电路短路。短路之后电流逐渐增加,小桥处的液体金属在电磁收缩力的作用下急剧收缩,形成很细的缩颈。随着电流的增加和缩颈的减小,小桥处的电流密度很快增加,对小桥急剧加热,造成过剩能量的积聚,较后导致小桥发生气化,同时引起金属飞溅。另一种看法认为短路飞溅是因为小桥爆断后,重新引燃电弧时,由于CO2气体被加热引起气体分解和体积膨胀,而产生强烈的气动冲击作用,该力作用在熔池和焊丝端头的熔滴上,它们在气动冲击作用下被抛出而产生飞溅。电焊陶瓷衬垫哪家好