第二代微型化双光子荧光显微镜 FHIRM-TPM 2.0,其成像视野是该团队于2017年发布的代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。在一批“早鸟项目”中,该系统已被多个研究组应用于不同的模式动物和行为范式,如小鼠的社交新颖性识别、斑胸草雀受调控后大脑特定神经元变化、新型神经递质乙酰胆碱探针的传导适应性分析以及猕猴三脑区成像等多项研究。双光子显微镜有这么多优点,那么双光子显微镜有哪些应用呢?国外bruker双光子显微镜应用是什么
使用基因编码的荧光探针可以在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。使用双光子显微镜(2PM)可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,但神经元活动的速度对于常规的2PM来说太快。目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且只是于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要较提高2PM的成像速率。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,从而导致x轴的横向分辨率为0.82µm,y轴的横向分辨率为0.35µm。美国激光双光子显微镜供应商双光子显微镜比单光子共聚焦显微镜较大的不同在于无须使用孔限制光学散射。
TOPTICAFemtoFiberultra920超快光纤激光器是一种易于操作且无需维护的激光系统。其输出波长为920nm,非常适合常规荧光基团(如GFP,eGFP,Eosin,GCaMP,CFP,Calcein或者Venus)的双光子激发。能给荧光基团提供比较高的峰值功率,常用于神经科学和其他与激光有关的生物光子学学科。而且其独特设计(制造简单且经济高效的光源)对双光子荧光显微镜发展的革新具有潜在的可能。在双光子显微镜中,峰值功率就是亮度!如果您希望获得比较好的图像亮度,那么你就需要短脉冲,高功率,较重要的是需要干净的时间脉冲形状。FemtoFiberultra920具有足够高的输出功率,较短的脉冲和独特的Clean-Pulse技术,以及具有相对比较高的峰值功率,使得其在双光子显微镜中可以实现****的亮度,而不会对样品造成不必要的加热。FemtoFiberultra920交钥匙,完全集成的色散补偿(可确保样品处的脉冲较短),内置的功率控制,操作直观以及其坚固而紧凑的设计,使该系统具有极为友好的用户体验,是非线性显微镜应用的较好解决方案。例如荧光蛋白的双光子激发和基于SHG的对比机制。
像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能“雾里看花”,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中相当有挑战性的问题之一。双光子显微镜型号有哪些?
为了验证动物生物样品的时间分辨成像能力,本实验观察了活海拉细胞高尔基体中的青色荧光蛋白mTFP1,见图3(a),(c)-(i)。使用的物镜及尺寸与荧光颗粒成像一致,对比可见v2PE在空间分辨率、激发深度级图像对比度较常规宽场显微镜都有所提高。此外,v2PE可以同时激发多个波长的荧光蛋白,这种技术还可以应用于细胞内分子的三维动力学多色成像。在此基础上,实验对海拉细胞中的高尔基体(mTFP1)和纤颤蛋白(EGFP)进行了在体成像,见图3(j)-(n),青色为mTFP1,绿色为EGFP,实验中两种荧光蛋白同时成像,终采用光谱分离法将不同蛋白的荧光信号分离出来。双光子显微镜将得到更大的发展与更广的应用。国内双光子显微镜最大分辨率
双光子显微镜能够进行光裂解、光转染和光损伤等光学操纵。国外bruker双光子显微镜应用是什么
首先我们来简单介绍一下激光扫描共聚焦和双光子这两种当红的显微成像技术。激光扫描共聚焦显微技术,是荧光显微成像的一种,用于激发样品的荧光信号并对其放大成像。在激光扫描共聚焦显微镜中,样品焦平面上每一时刻只有一个点被激发光照射,纵然焦平面外也有激发光照射,但通过探测器前的(pinhole),有焦平面上的荧光信号能被探测器接收。也就是说,每个时刻,只有焦平面上一个点的信号被探测。通过点扫描的方式,一个个点的信号就可以组合出终的图像。双光子显微镜(包括多光子显微镜)同样采用点扫描的方式得到图像。不同的是,其采用的激发光波长较长,只有当两个(或更多)激发光光子几乎同时轰击荧光探针的时候才可能激发出荧光信号。所以只有在光子密度特别大的焦点,出才会激发出荧光。也就是说,双光子显微镜中,同样每个时刻只有焦平面上一个点的信号被探测,并且连焦平面外的荧光信号也不会有。国外bruker双光子显微镜应用是什么