继首代小型化双光子显微镜在国际上获得小鼠自由行为过程中大脑神经元和突触的动态图像后,我们成功研制了第二代小型化双光子显微镜。它具有更大的成像视野和三维成像能力,可以清晰稳定地对自由活动小鼠三维脑区的数千个神经元进行成像,实现对同一批神经元的一个月追踪记录。通过对微光学系统的重新设计系统的。微物镜工作距离延长至1mm,实现无创成像。内嵌可拆卸的快速轴向扫描模块,可采集深度180微米的3D体成像和多平面快速切换的实时成像。该扫描模块由一个快速的电动变焦透镜和一对中继透镜组成,在不同深度成像时可保持放大倍率恒定。其变焦模块重量,研究人员可根据实验需求自由拆卸。此外,新版微型化成像探头可整体即时拔插,极大地简化了实验操作,避免了长周期实验时对动物的干扰。在重复装卸探头同一批神经元时,视场旋转角小于,边界偏差小于35微米。 多光子显微镜的成熟的深部组织成像技术中。还有其他类型的图像对比提供有关样本的有价值信息。美国共聚焦多光子显微镜
快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。离体多光子显微镜设备多光子激光扫描显微镜已经成为了一个活跃且多产的领域。
单光子激发荧光的过程,就是荧光分子吸收一个光子,从基态跃迁到激发态,跃迁以后,能量较大的激发态分子,通过内转换把部分能量转移给周围的分子,自己回到比较低电子激发态的比较低振动能级。处于比较低电子激发态的比较低振动能级的分子的平均寿命大约在 10s 左右。这时它不是通过内转换的方式来消耗能量,回到基态,而是通过发射出相应的光量子来释放能量,回到基态的各个不同的振动能级时,就发射荧光。因为在发射荧光以前已经有一部分能量被消耗,所以发射的荧光的能量要比吸收的能量小,也就是荧光的特征波长要比吸收的特征波长来的长。
针对双光子荧光显微镜的特点,从理论上分析双光子成像特点,并搭建一套时间、空间分辨率高,能实时、动态、多参数测量的双光子荧光显微镜系统。具体系统应实现∶(1)能对不同染料的双光子荧光进行探测;(2)用特定染料对样品标记以后,能实现双光子荧光的三维成像;(3)通过实验的研究,改进双光子荧光显微成像系统;(4)在保证成像质量的前提下,简化整个系统,使得实验操作方便、安全。单光子激发荧光的过程,就是荧光分子吸收一个光子,从基态跃迁到激发态,跃迁以后,能量较大的激发态分子,通过内转换把部分能量转移给周围的分子,自己回到比较低电子激发态的比较低振动能级。处于比较低电子激发态的比较低振动能级像在生物医学光学成像研究中显示了较大的优势。而在显微成像中,双光子荧光显微镜凭其独有的优点,成为研究细胞结构和功能检测的重要工具。全球多光子显微镜主要消费地区分析,包括消费量及份额等。
现代分子生物学技术的迅速发展和科技的进步,特别是随着后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,为在体研究基因表达规律、分子间的相互作用、细胞的增殖、细胞信号转导、诱导分化、细胞凋亡以及新的血管生成等提供了良好的生物学条件。然而,尽管人们利用现有的分子生物学方法,已经对基因表达和蛋白质之间的相互作用进行了深入、细致的研究,但仍然不能实现对蛋白质和基因活动的实时、动态监测。在细胞的生理过程中,基因、尤其是蛋白质的表达、修饰和相万作用往往发生可逆的、动态的变化。目前的分子生物学方法还不能捕获到蛋白质和基因的这些变化,但获取这些信息对与研究基因的表达和蛋白质之间的相互作用又至关重要。因此,发展能用于、动态、实时、连续监测蛋白质和基因活动的方法非常必要。多光子显微镜作为神经科学重要的研究工具,近年来发展快速,品牌也众多。模块化多光子显微镜实验操作
多光子激光扫描显微镜采用波长较长的红外激光,能量脉冲式激发,红外光比可见光在生物组织中的穿透力更强。美国共聚焦多光子显微镜
2020年,TonmoyChakraborty等人提出了一种加快2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品的缓慢轴向扫描速度限制了体积成像的速度。近年来,通过使用远程聚焦技术或电可调谐透镜(ETL)已经实现了快速轴向扫描;但是,远程聚焦中反射镜的机械驱动会限制轴向扫描速度,ETL会引入球面像差和更高阶像差,从而无法进行高分辨率成像。为了克服这些局限性,该组引入了一种新颖的光学设计,能将横向扫描转换为可用于高分辨率成像的无球差的轴向扫描。该设计有两种实现方式,第一种能够执行离散的轴向扫描,另一种能够进行连续的轴向扫描。具体装置如图3a所示,由两个垂直臂组成,每个臂中都有一个4F望远镜和一个物镜。远程聚焦臂包含一个检流扫描镜(GSM)和一个空气物镜(OBJ1),另一个臂(称为照明臂)由一个水浸物镜(OBJ2)构成。将这两个臂对齐,以使GSM与两个物镜的后焦平面共轭。准直的激光束被偏振分束器反射到远程聚焦臂中,GSM对其进行扫描,进而使得OBJ1产生的激光焦点进行横向扫描。美国共聚焦多光子显微镜