多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

多束扫描技术可以同时对神经元组织的不同位置进行成像该技术:对两个远距离(相距大于1-2 mm)的成像部位,通常使用两条单独的路径进行成像;对于相邻区域,通常使用单个物镜的多光束进行成像。多光束扫描技术必须特别注意激发光束之间的串扰问题,这个问题可以通过事后光源分离方法或时空复用方法来解决。事后光源分离方法指的是用算法来分离光束消除串扰;时空复用方法指的是同时使用多个激发光束,每个光束的脉冲在时间上延迟,这样就可以暂时分离被不同光束激发的单个荧光信号。引入越多路光束就可以对越多的神经元进行成像,但是多路光束会导致荧光衰减时间的重叠增加,从而限制了区分信号源的能力;并且多路复用对电子设备的工作速率有很高的要求;大量的光束也需要更高的激光功率来维持近似单光束的信噪比,这会容易导致组织损伤。多光子显微镜使用高能量锁模脉冲激光器。美国飞秒激光多光子显微镜价格

美国飞秒激光多光子显微镜价格,多光子显微镜

以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内能吸收到一个光子而从金属表面逸出。强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在短时间吸收多个光子成为可能,从而形成多光子电效应,这已被实验证实。为什么一般讨论的光电效应都是指单光子光电效应呢?这是因为,在使用普通光源的情况下,电子吸收两个以上光子能量的概率是非常非常小的,几乎为零。事实上,爱因斯坦本人就考虑过在强光下发生光电效应的可能性问题。对此,他有如下的论述:光电效应中的一个电子吸收两个光子的几率不会大于下雨天两个雨滴同事打在一个蚂蚁上的几率。因此,多光子光电效应在实验上的研究成为可能,是二十世纪六十年代激光乃至强激光出现以后的事情。有了激光,对于双光子光电效应,在实验上和理论上均取得了许多成果。利用强激光,人们不仅观察到双光子和三光子的光电效应,甚至观察到金靶材吸收几十个等效光子实验现象。bruker多光子显微镜供应商多光子共聚焦扫描显微镜比双光子共聚焦扫描显微镜具有更高的空间分辨率。

美国飞秒激光多光子显微镜价格,多光子显微镜

随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊疗提供了更多、更有效的手段。生物医学光学(BiomedicalOptics)是近年来受到国际光学界和生物医学界关注的研究热点,在生物活检、光动力、细胞结构与功能检测、基因表达规律的在体研究等问题上取得了一系列研究成果,目前正在从宏观到微观上对大脑活动与功能进行多层面的研究。细胞重大生命活动(包括细胞增殖、分化、凋亡及信号转导)的发生和调节是通过生物大分子间(如蛋白质-蛋白质、蛋白质-核酸等)相互作用来实现的。蛋白质作为基因调控的产物,与细胞和机体生理过程代谢直接相关,深入研究基因表达及蛋白质-蛋白质相互作用不仅能揭示生命活动的基本规律,同时也能深入了解疾病发生的分子机理,进而为寻找更有效的药物分子、提高药物筛选和药物设计的效率提供新的方法和思路。

    基于多光子显微镜的神经成像技术原理:多光子显微镜可用于深度成像和三维成像,因此可用于拍摄不透明的厚样品。目前主要使用的多光子显微镜包括双光子显微镜和三光子显微镜。双光子显微镜的结构与共焦类似,区别在于:1)双光子显微镜的激发光波长比共焦长,能量较低,但穿透能力较强;2)双光子显微镜没有小孔,提高了检测效率;3)双光子显微镜成像深度较快提高。那么,为什么双光子能具有共焦显微镜所没有的优势呢?原因是它采用双光子激发方式。使用波长较长的激发光子,光子的能量较低,因此电子需要吸收两个这样的激发光子才能达到激发态,从而释放出一个荧光光子。因此,荧光信号的强度与光强的平方成正比。因为焦点处的光强较大,只能在焦点处激发荧光。波长越长,穿透力越强,因此双光子显微镜的成像深度大于共焦显微镜。由于两个光子只在焦点激发荧光,不需要小孔,而是将所有的荧光都收集起来,提高了检测效率。三光子显微镜的原理类似于双光子显微镜,利用三个激发光子可以实现更深的成像深度。由于使用了更长的激发波长,穿透能力更强,成像深度更大。此外,由于较强的非线性效应,荧光信号的强度与光强的立方成正比,因此比双光子具有更低的非聚焦激发和背景噪声。 国内市场多光子显微镜销售渠道。

美国飞秒激光多光子显微镜价格,多光子显微镜

Ca2+是重要的第二信使,对于调节细胞的生理反应具有重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的 Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的 Ca2+梯差即所谓的空间 Ca2梯差。多光子显微镜将生物打印结构准确定位和定向到特定的解剖部位,使其能够在小鼠组织内制造复杂结构。美国飞秒激光多光子显微镜价格

中国市场多光子显微镜进出口贸易趋势。美国飞秒激光多光子显微镜价格

双光子荧光显微成像主要有以下优点∶a.光损伤小∶双光子荧光显微镜使用可见光或近红外光作为激发光,对细胞和组织的光损伤很小,适合于长时间的研究;b.穿透能力强∶相对于紫外光,可见光或近红外光具有很强的穿透性,可以对生物样品进行深层次的研究;c.高分辨率∶由于双光子吸收截面很小P,只有在焦平面很小的区域内可以激发出荧光,双光子吸收局限于焦点处的体积约为λ范围内;d.漂白区域很小,焦点以外不发生漂白现象。e.荧光收集率高。与共聚焦成像相比,双光子成像不需要光学滤波器,提高了荧光收集率。收集效率提高直接导致图像对比度提高。f.对探测光路的要求低。由于激发光与发射荧光的波长差值加大以及自发的三维滤波效果,多光子显微镜对光路收集系统的要求比单光子共焦显微镜低得多,光学系统相对简单。g.适合多标记复合测量。许多染料荧光探针的多光子激发光谱要比单光子激发谱宽阔,这样,可以利用单一波长的激发光同时激发多种染料,从而得到同一生命现象中的不同信息,便于相互对照、补充。美国飞秒激光多光子显微镜价格

与多光子显微镜相关的**
与多光子显微镜相关的扩展资料【更多】
多光子显微镜是一种用于生物学领域的分析仪器,于2009年04月01日启用。
信息来源于互联网 本站不为信息真实性负责