多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

    多光子显微优点:☆光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对细胞和组织的光损伤小,适用于长时间的研究;☆穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力,因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题;☆高分辨率:由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收*局限于焦点处的体积约为波长3次方的范围内;☆漂白区域小:由于激发只存在于交点处,所以焦点以外的区域都不会发生光漂白现象;☆荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器,这样就提高了对荧光的收集率,而收集率的提高直接导致图像对比度的提高;☆图像对比度高:由于荧光波长小于入射波长,因而瑞利散射产生的背景噪声只有单光子激发时的1/16,降低了散射的干扰;☆光子跃迁具有很强的选择激发性,所以可以对生物组织中一些特殊物质进行成像研究;☆避免组织自发荧光的干扰,获得较强的样品荧光:生物组织中的自发荧光物质的激发波长一般在350~560nm范围内,采用近红外或红外波段的激光作为光源,能**降低生物组织对激发光吸收。 多光子显微镜在基础科学和临床诊断领域的应用范围正在持续增长。美国模块化多光子显微镜Ultima 2P Plus

美国模块化多光子显微镜Ultima 2P Plus,多光子显微镜

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。美国模块化多光子显微镜技术多光子显微镜中,极短的激光脉冲聚焦在样品上的紧密点上,激发荧光团产生图像。

美国模块化多光子显微镜Ultima 2P Plus,多光子显微镜

从产品类型及技术方面来看,正置显微镜占据绝大多数市场。2020年,全球多光子激光扫描正置显微镜市场达到87.30百万美元,预计到2027年该部分市场将达到154.02百万美元,年复合增长率(2021-2027)为8.48%。中国多光子激光扫描正置显微镜市场达到13.32百万美元,预计到2027年该部分市场将达到25.21百万美元,年复合增长率(2021-2027)为9.58%。从产品市场应用情况来看,研究机构为主要应用领域,2020年约占全球市场46.28%。2020年,全球多光子激光扫描显微镜研究机构应用消费量为174台,预计2027年达到349台,2021-2027年复合增长率(CAGR)为9.72%。

多光子激发的特点。激发波长∶两个或多个光子同时激发,激发波长是单光子激发波长的两倍或多倍(i.e.红光能激发UV探针)。多光子激发∶依赖于多个光子同时到达的时间。使用脉冲飞秒激光器(i.e.10-16 seconds),且能提供更高的峰值功率。荧光限制在焦点处,能满足多个光子同时达到产生多光子吸收。荧光强度正比于(激光强度)n。为什么使用飞秒激光器?多光子激发需要超快的激光器,皮秒脉冲不能实现三光子激发。深度成像需要更高、更窄脉冲输出功率。多光子激发光源处于近红外区,对细胞毒性和光漂白更小。国内市场多光子显微镜销售渠道。

美国模块化多光子显微镜Ultima 2P Plus,多光子显微镜

对于双光子成像而言,离焦和近表面荧光激发是两个比较大的深度限制因素,而对于三光子成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面比2P要小得多,所以需要更高数量级的脉冲能量才能获得与2P激发的相同强度的荧光信号。功能性3P显微镜比结构性3P显微镜的要求更高,它需要更快速的扫描,以便及时采样神经元活动;需要更高的脉冲能量,以便在每个像素停留时间内收集足够的信号。复杂的行为通常涉及到大型的大脑神经网络,该网络既具有局部的连接又具有远程的连接。要想将神经元活动与行为联系起来,需要同时监控非常庞大且分布普遍的神经元的活动,大脑中的神经网络会在几十毫秒内处理传入的刺激,要想了解这种快速的神经元动力学,就需要MPM具备对神经元进行快速成像的能力。快速MPM方法可分为单束扫描技术和多束扫描技术。多光子显微镜将生物打印结构准确定位和定向到特定的解剖部位,使其能够在小鼠组织内制造复杂结构。美国在体多光子显微镜原理

多光子显微镜的分辨率比传统的单光子共聚焦要低的多。美国模块化多光子显微镜Ultima 2P Plus

    多光子显微镜因拥有较深的成像深度,和较高的对比度在生物成像中有着重要的意义,但是它通常需要较高的功率。结合时间上展开的超短脉冲可以实现超快的扫描速度和较深的成像深度,但是其本身所利用的近红外波段的光会导致分辨率较低。清华大学陈宏伟教授和北京大学席鹏研究员合作研究,结合了结构光成像和上转化粒子,开发了一种基于多光子上转化材料和时间编码结构光显微镜的高速超分辨成像系统(MUTE-SIM)。它可以实现50MHz的超高的扫描速度,并突破了衍射极限,实现了超分辨成像。相较于普通的荧光显微镜,该显微镜提升了,并且只需要较低的激发功率。这种超快、低功率、多光子的超分辨技术,在分辨率高的生物深层组织成像上有着长远的应用前景。 美国模块化多光子显微镜Ultima 2P Plus

与多光子显微镜相关的**
与多光子显微镜相关的扩展资料【更多】
多光子显微镜是一种用于生物学领域的分析仪器,于2009年04月01日启用。
信息来源于互联网 本站不为信息真实性负责