多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

    与传统的单光子宽场荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深度成像的功能,极大地促进了研究人员对整个大脑深部神经的认识。2019年,JeromeLecoq等从脑深部神经元成像、大数量神经元成像、高速神经元成像三个方面讨论了相关的MPM技术。为了将神经元活动与复杂行为联系起来,通常需要对大脑皮层深处的神经元进行成像,这就要求MPM具备深度成像的能力。激发光和发射光会被生物组织高度散射和吸收,这是限制MPM成像深度的主要因素。虽然增加激光强度可以解决散射问题,但会带来其他问题,如烧焦样品、散焦和近表面荧光激发。增加MPM成像深度的比较好方法是使用更长的波长作为激发光。另外,对于双光子(2P)成像而言,离焦和近表面荧光激发是两个比较大的深度限制因素,而对于三光子(3P)成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面比2P要小得多,所以需要更高数量级的脉冲能量才能获得与2P激发的相同强度的荧光信号。 多光子成像是一种非线性的过程,信号产生要求功率密度达到MW/cm2的量级。清醒动物多光子显微镜焦点激发

清醒动物多光子显微镜焦点激发,多光子显微镜

2020年,TonmoyChakraborty等人提出了一种加快2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品的缓慢轴向扫描速度限制了体积成像的速度。近年来,通过使用远程聚焦技术或电可调谐透镜(ETL)已经实现了快速轴向扫描;但是,远程聚焦中反射镜的机械驱动会限制轴向扫描速度,ETL会引入球面像差和更高阶像差,从而无法进行高分辨率成像。为了克服这些局限性,该组引入了一种新颖的光学设计,能将横向扫描转换为可用于高分辨率成像的无球差的轴向扫描。该设计有两种实现方式,第一种能够执行离散的轴向扫描,另一种能够进行连续的轴向扫描。具体装置如图3a所示,由两个垂直臂组成,每个臂中都有一个4F望远镜和一个物镜。远程聚焦臂包含一个检流扫描镜(GSM)和一个空气物镜(OBJ1),另一个臂(称为照明臂)由一个水浸物镜(OBJ2)构成。将这两个臂对齐,以使GSM与两个物镜的后焦平面共轭。准直的激光束被偏振分束器反射到远程聚焦臂中,GSM对其进行扫描,进而使得OBJ1产生的激光焦点进行横向扫描。全自动多光子显微镜成像分辨率多光子显微镜是衡量一个国家制造业和高科技发展水平的重要标准之一。

清醒动物多光子显微镜焦点激发,多光子显微镜

    1,光源、光路高度整合通过精密的设计,将飞秒激光器、扫描振镜、PMT、滤光片组,甚至是单光子荧光光路全套整合在一个不大的扫描头(ScanHead)内,无论扫描头如何移动,扫描头内的光路都可以保持稳定不变,从而实现了超稳定、免维护的特点。2,配合多维度、高精度机械控制系统。扫描头直接架设在一个多维运动的机械装置上,可沿任意方向和角度移动扫描头,方便对动物样本进行多方位的扫描观察。而这在常规方案的多光子显微镜上有很大的实现难度,不但需要多个关节组合的光路导向机构,并且在这些关节旋转的时候,都冒着极大的光路偏移的风险,以至于在使用一段时间后都需要对光路进行再次校准,而这样的问题在我司上则完全不会发生。3.一机多能。

    在生物成像中,我司多光子显微镜具有清(清晰),快(快速),深(深层),活这四个方面。结合了多光子上转化材料以及时间编码的结构光超分辨技术,实现了快速(50MHz的扫描速度),超分辨(超衍射极限)成像。作为一种新的高速,超高分辨率的成像系统,MUTE-SIM可以帮助我们对快速运动的生物图像进行分辨率高的成像。尽管关于深度成像的应用我们没有进一步展示,但是结合1560nm近红外光相对于可见光更佳的穿透性,我们相信该技术将有利于对生物组织进行高速,超分辨,高深度地成像,有助于生物影像学的发展。滔博生物TOP-Bright是一家集研发,生产,销售于一体的专注于神经科学产品及致力于向高校、科研机构等领域提供实验室一体化方案的高科技企业。业务服务范围已遍布至全国各地几百家实验室。目前公司主营产品是享誉全球的国际品牌和产品,这些仪器设备都是科学研究所必备且不可替代的基础仪器。 国内市场多光子显微镜销售渠道。

清醒动物多光子显微镜焦点激发,多光子显微镜

以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内能吸收到一个光子而从金属表面逸出。强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在短时间吸收多个光子成为可能,从而形成多光子电效应,这已被实验证实。为什么一般讨论的光电效应都是指单光子光电效应呢?这是因为,在使用普通光源的情况下,电子吸收两个以上光子能量的概率是非常非常小的,几乎为零。事实上,爱因斯坦本人就考虑过在强光下发生光电效应的可能性问题。对此,他有如下的论述:光电效应中的一个电子吸收两个光子的几率不会大于下雨天两个雨滴同事打在一个蚂蚁上的几率。因此,多光子光电效应在实验上的研究成为可能,是二十世纪六十年代激光乃至强激光出现以后的事情。有了激光,对于双光子光电效应,在实验上和理论上均取得了许多成果。利用强激光,人们不仅观察到双光子和三光子的光电效应,甚至观察到金靶材吸收几十个等效光子实验现象。证实了多光子显微镜对皮肤和别的皮肤病的诊断的可行性。Ultima 2P Plus多光子显微镜

生产和消费的角度分析多光子显微镜的主要生产地区、主要消费地区以及主要的生产商。清醒动物多光子显微镜焦点激发

作为一个多学科交叉、知识密集、资金密集的高技术产业,多光子显微镜涉及医学、生物学、化学、物理学、电子学、工程学等学科,生产工艺相对复杂,进入门槛较高,是衡量一个国家制造业和高科技发展水平的重要标准之一。过去的5年,多光子显微镜市场集中,由于投产生产的成本较高,技术难度大,目前涌现的新企业不多。显微镜作为一个传统的高科技行业,其作用至今没有被其他技术颠覆,只是不断融合并发展相关技术,在医疗和其他精密检测领域发挥着更大的作用。显微镜的商业化发展已进入成熟期,主要需求来自教学、生命科学的研究及精密检测等,全球市场呈现平缓的增长态势。然而,显微镜产品(如多光子显微镜、电子显微镜)正拉动市场需求,多光子显微镜市场发展潜力巨大。清醒动物多光子显微镜焦点激发

与多光子显微镜相关的**
与多光子显微镜相关的扩展资料【更多】
多光子显微镜是一种用于生物学领域的分析仪器,于2009年04月01日启用。
信息来源于互联网 本站不为信息真实性负责