膜片钳基本参数
  • 品牌
  • Patch Clamp
  • 型号
  • 型号齐全
膜片钳企业商机

20世纪初由Cole发明,Hodgkin和Huxleyw完善,目的是为了证明动作电位的峰电位是由于膜对钠的通透性发生了一过性的增大过程。但当时没有直接测定膜通透性的办法,于是就用膜对某种离子的电导来**该种离子的通透性。

为了弄清膜电导变化的机制和离子通道的存在,也为了克服电压钳的缺点Erwin和Bert在电压钳的基础上发明了膜片钳,并利用该技术***在蛙肌膜上记录到PA级的乙酰胆碱激动的单通道电流,***证明了离子通道的存在。并证明在完整细胞膜上记录到膜电流是许多单通道电流总和的结果。这一技术被誉为与分子克隆技术并驾齐驱的划时代的伟大发明。二人因此获得诺贝尔生理或医学奖。 现代膜片钳技术是在电压钳技术的基础上发展起来的。进口全自动膜片钳离子通道

进口全自动膜片钳离子通道,膜片钳

高阻封接技术还明显降低了电流记录的背景噪声,从而戏剧性地提高了时间、空间及电流分辨率,如时间分辨率可达10μs、空间分辨率可达1平方微米及电流分辨率可达10-12A。影响电流记录分辨率的背景噪声除了来自于膜片钳放大器本身外,较主要还是信号源的热噪声。信号源如同一个简单的电阻,其热噪声为σn=4Kt△f/R式中σn为电流的均方差根,K为波尔兹曼常数,t为温度,△f为测量带宽,R为电阻值。可见,要得到低噪声的电流记录,信号源的内阻必需非常高。如在1kHz带宽,10%精度的条件下,记录1pA的电流,信号源内阻应为2GΩ以上。电压钳技术只能测量内阻通常达100kΩ~50MΩ的大细胞的电流,从而不能用常规的技术和制备达到所要求的分辨率。细胞膜片钳研究膜电导测定的依据是电学中的欧姆定律。

进口全自动膜片钳离子通道,膜片钳

电压钳技术,是20世纪初由Cole发明,Hodgkin和Huxley完善,其设计的主要目的是为了证明动作电位的产生机制,即动作电位的峰电位是由于膜对钠的通透性发生了一过性的增大过程。但当时没有直接测定膜通透性的方法,于是就用膜对某种离子的电导来**该种离子的通透性,膜电导测定的依据是电学中的欧姆定律,如膜的Na电导GNa与电化学驱动力(Em-ENa)和膜电流INa的关系GNa=INa/(Em-ENa).因此可通过测量膜电流,再利用欧姆定律来计算膜电导,但是,利用膜电流来计算膜电导时,记录膜电流期间的膜电位必须保持不变,否则膜电流的变化就不能**膜电导的变化。这一条件是利用电压钳技术实现的。下张幻灯中的右边两张图是Hodgkin和Huxley在半个世纪以前利用电压钳记录的抢乌贼的动作电位和动作电位过程中的膜电流的变化图,他们的实验***证明参与动作电位的离子流由Na,k,漏(Cl)三种成分组成。并对这些离子流进行了定量分析。这一技术对阐明动作电位的本质和离子通道的的研究做出了极大的贡献。

膜片钳技术实现了小片膜的孤立和高阻封接的形成,由于高阻封接使背景噪声水平降低,相对地增宽了记录频带范围,提高了分辨率。另外,它还具有良好的机械稳定性和化学绝缘性。而小片膜的孤立使对单个离子通道进行研究成为可能。单通道电流1.典型的单通道电流呈一种振幅相同而持续时间不等的脉冲样变化。他有两个电导水平,即O和1,分别对应通道的关闭和开效状态。2.有的矩形脉冲簇状发放时,通道电流不在同一水平,可以明显观察到不同数目离子通道所形成的电流台阶,从而可推断出被测膜片的通道数目。3.有的通道可记录到圆滑型和方波形两种形式。4.有些通道开放活动是持续开放,中间被闪动样的关闭所中断,形成burst开放。有些通道开放活动是簇状开放与短期平静交替出现,形成簇状发放串(Cluster)在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh启动的单通道离子电流,从而产生了膜片钳技术。

进口全自动膜片钳离子通道,膜片钳

1976年德国马普生物物理化学研究所Neher和Sakmann在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh的单通道离子电流,从而产生了膜片钳技术。1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),明显降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。Sakmann和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。脑片膜片钳蛋白质分子水平

早期的研究多使用双电极电压钳技术作细胞内电活动的记录。进口全自动膜片钳离子通道

过去认为,膜片钳只能在培养细胞或酶解的细胞上进行,这样得到的细胞膜表面比较光滑,才能够形成高阻封接,但缺点是组织的正常三维结构被破坏,并且对神经中枢内突触特有的传递机能的研究无法展开。于是,一些学者建立了组织切片膜片钳技术(Slicepatch),就能在哺乳动物脑片制备上做全细胞记录。1992年,在脑片膜片钳技术上,美国Ferster实验室报道在在体猫的视皮层用膜片钳全细胞记录研究了视刺激诱发的兴奋性和***性突触后电位相互影响及节律性膜电位的变化规律。1993年,德国的Dodt和Sakmann合作,利用红外电视显微镜监视,使得膜片钳记录不但能够在神经元胞体及其树突上进行,而且可同时在这两个不同的部位作膜片钳记录。进口全自动膜片钳离子通道

与膜片钳相关的**
与膜片钳相关的扩展资料【更多】
膜片钳又称单通道电流记录技术,用特制的玻璃微吸管吸附于 细胞表面,使之形成10~100的密封(giga-seal),又称巨阻封接,被孤立的小膜片面积为μm量级,内中*有少数 离子通道。然后对该膜片实行 电压钳位,可测量单个离子通道开放产生的pA(10的负12次方安培)量级的电流,这种通道开放是一种随机过程。通过观测单个通道开放和关闭的电流变化,可直接得到各种 离子通道开放的电流 幅值分布、开放几率、开放寿命分布等功能参量,并分析它们与 膜电位、离子浓度等之间的关系。还可把吸管吸附的膜片从细胞膜上分离出来,以膜的外侧向外或膜的内侧向外等方式进行实验研究。这种技术对 小细胞的 电压钳位、改变膜内外溶液成分以及施加药物都很方便。 1976年德国 马普生物物理化学研究所Neher和Sakmann***在青蛙肌细胞上用双电极钳制 膜电位的同时,记录到ACh***的单通道 离子电流,从而产生了 膜片钳技术。
信息来源于互联网 本站不为信息真实性负责