本系统在实际应用中,能够与其他电力设备监测系统进行有效融合。例如,它可以与 GIS 设备的温度监测系统、压力监测系统等进行数据交互和共享。通过综合分析不同监测系统的数据,能够更***地了解 GIS 设备的运行状态。例如,当局部放电监测系统检测到异常放电信号时,结合温度监测系统发现设备局部温度升高,可进一步判断可能存在的绝缘故障原因,为设备的综合评估和故障诊断提供更丰富的数据支持和服务,提高了电力系统整体的运维水平。在线监测数据的压缩比是多少,对数据准确性有何影响?智能化在线监测电话

对 GIS 设备机械性故障监测的投入,从长远来看具有***的经济效益。虽然在监测系统的建设和维护方面需要一定的资金投入,但通过及时发现和处理机械性故障,避免设备故障导致的停电事故和大规模维修费用,能够为国家电网公司节省大量的资金。例如,一次因 GIS 设备机械性故障引发的停电事故,可能导致工业用户的生产停滞,造成巨大的经济损失。而通过有效的监测,提前预防故障的发生,可避免这些间接经济损失,同时减少设备维修成本,提高电力系统的整体经济效益。浙江电抗器在线监测安装杭州国洲电力科技有限公司振动声学指纹在线监测系统的性能测试报告。

在国家电网的实际运维工作中,加强对 GIS 设备机械性故障的监测能够显著提高设备的可靠性。通过实时监测设备的振动和声学状态,及时发现潜在的机械性故障隐患,提前安排检修和维护工作,避免设备故障的发生。例如,在某变电站的 GIS 设备运维中,通过安装机械性故障监测系统,及时发现了一台 GIS 设备的开关触头接触异常问题。运维人员在设备故障发生前对触头进行了修复,避免了因触头故障导致的停电事故,保障了电力供应的稳定性,提高了电网的可靠性。
智能算法在 GIS 设备机械性故障监测中也具有广阔的应用前景。利用机器学习算法,如支持向量机、人工神经网络等,对大量的振动和声学监测数据进行学习和训练。通过建立故障诊断模型,使算法能够自动识别设备的正常运行状态和各种机械性故障状态。例如,将历史监测数据中的正常状态数据和已知的机械性故障状态数据作为训练样本,训练人工神经网络模型。经过训练的模型可以对实时监测数据进行快速分析,准确判断设备是否存在机械性故障,并预测故障的发展趋势,为设备的维护和检修提供科学依据。杭州国洲电力科技有限公司局部放电在线监测技术的抗干扰能力。

综上所述,采用声纹振动法监测变压器OLTC、绕组及铁芯的状态,适用于带电监测/在线监测,与变压器无电气连接而不影响正常运行,有安装方便、安全、可靠等优点。我公司结合多年技术预研储备及现场技术服务经验,成功研制出GZAFV-01型声纹监测系统,既有固定安装的长期在线监测式,也有便携式的带电监测系统及可移动的重症监护式。GZAFV-01系统由声纹振动传感器(压电式加速度计)、驱动电机电流传感器、数据采集装置(在线监测式:IED,便携/手持式:主机;下文皆用IED/主机简称)、云服务器、通讯单元及供电单元构成;操控及监测数据分析软件结合包络分析、重合度分析、小波分析、能量分布矩阵、时域信号频谱分析等多种算法,并提取故障诊断特征参量,在线状态下实现变压器OLTC、绕组及铁芯的健康态势评价与故障类型诊断。在线监测系统的故障诊断准确率与哪些参数相关?便携式声纹在线监测前景
杭州国洲电力科技有限公司在线监测技术的标准化设计与实施。智能化在线监测电话
异常报警功能中的自动捕捉并记录启动报警的局放信号,为后续的故障溯源和责任认定提供了关键证据。在电力设备发生故障后,通过分析这些记录的局放信号,能够准确判断故障发生的时间、部位以及可能的原因。例如,在某起电力事故调查中,通过查看局部放电在线监测系统记录的报警信号,确定了故障是由于某台设备内部绝缘击穿导致局部放电引发,为事故责任认定和后续设备改进提供了有力的数据支持。同时,这些记录的数据也可用于对设备制造商的产品质量评估,推动设备制造工艺的改进和提升。智能化在线监测电话