二、相关标准(遵循但不限于下列标准)2.1GB/T4208外壳防护等级(IP代码)。2.2GB/T10230.1分接开关第1部分:性能要求和试验方法。2.3GB/T10230.2分接开关第2部分:应用导则。2.4DL/T265变压器有载分接开关现场试验导则。2.5DL/T574变压器分接开关运行维修导则。2.6DL/T846.8-2017高电压测试设备通用技术条件第8部分有载分接开关测试仪。2.7DL/T860变电站通信网络和系统。2.8DL/T1430变电设备在线监测系统技术导则。2.9DL/T1432.1变电设备在线监测装置检验规范第1部分:通用检验规范。2.10DL/T1538电力变压器用真空有载分接开关使用导则。2.11DL/T1540油浸式交流电抗器(变压器)运行振动测量方法。2.12DL/T1694.2高压测试仪器及设备校准规范第2部分:电力变压器分接开关测试仪。2.13DL/T1805电力变压器用有载分接开关选用导则。2.14Q/GDW383智能变电站技术导则。杭州国洲电力科技有限公司振动声学指纹在线监测功能的多场景适用性。有载开关声纹振动声学指纹在线监测功能

GIS在带电运行过程中除了机械故障会导致异常振动外,放电性故障(如绝缘子内部缺陷、螺丝松动、悬浮电位放电、毛刺前列放电、金属微粒放电等)也会导致声纹振动信号的产生。因此,通过深入研究GIS本体的声纹振动信号特征可发现GIS机械性故障及放电性故障,具有监测***、监测结果互相补充的特点。基于声纹振动信号的在线监测,可在GIS带电运行状态下及时发现潜在故障,并及时预警,从而延长使用寿命,提高电网运行的可靠性。我公司以声纹振动信号为主,结合电流、位移等其他参量的在线监测,开发了故障诊断算法(***软著权)并提取相关特征参量研制完成的GZAFV-01型声纹振动监测系统,适用于开关设备的带电监测(便携诊断式、手持巡检式)、在线监测(长期固定式、短期移动式)。特色服务振动声学指纹在线监测监测说明书GZAFV-01型声纹振动监测系统(变压器、电抗器)包络分析。

3.3.1.3能量分布曲线基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
3.3.1.4时频能量分布矩阵(ATF图谱)获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。
电力系统中的高压开关类设备主要包括GIS(气体绝缘金属封闭开关设备)、AIS(敞开式断路器)、GIS /敞开式的隔离开关、开关柜断路器等。各类开关设备的材料、工艺、设计、安装过程中的缺陷以及频繁动作极易引起机械故障,严重时更会导致电气火灾、停电等事故,现有状态检修方式的试验周期长、耗费人力物力、检修效率低等缺点,较大地影响设备正常运行。
基于声纹振动信号的在线监测,可在GIS带电运行状态下及时发现潜在故障,并及时预警,从而延长使用寿命,提高电网运行的可靠性。我公司以声纹振动信号为主,结合电流、位移等其他参量的在线监测,开发了故障诊断算法(***软著权)并提取相关特征参量研制完成的GZAFV-01型声纹振动监测系统,适用于开关设备的带电监测(便携诊断式、手持巡检式)、在线监测(长期固定式、短期移动式)。 杭州国洲电力科技有限公司振动声学指纹在线监测技术的市场需求分析。

功能特性◆IED/主机具备多个点位开展实时连续性或周期性的监测GIS本体声纹振动信号,向平台层操控计算机传送监测数据开展智能分析,操控及监测数据分析软件实时展示分析结果和预警信息。◆具有比对分析功能:可将现测的与同规格被试品/历史的监测数据进行横向/纵向比对分析。◆具有断电不丢失存储数据、复电自动启动/复位功能,可连续实时监测、存储及导出1年以上数据。◆具备声纹振动信号时域波形展示、频谱分析(基频为100Hz)功能,可自动提取峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量,以作为GIS运行状态分析参数,用户可设置报警阈值。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:杭州国洲电力科技有限公司振动声学指纹在线监测服务的客户成功案例。智能化振动声学指纹在线监测指纹监测的原理
杭州国洲电力科技有限公司振动声学指纹在线监测技术的客户反馈分析。有载开关声纹振动声学指纹在线监测功能
3.3.2.3基频信号能量比(E)100Hz基频分量时域信号能量占信号总能量的比值,计算公式:E=jmS1j2jmSj2,其中S1为100Hz基频分量的时域信号,Sj为原始信号,j为采样索引值。正常状态下,由于100Hz基频分量为声纹振动频谱图的主要成分,基频信号能量比应较大;存在故障时,谐波分量增加且峰值频率发生偏移,基频信号能量比变小。3.3.2.4互相关系数(r)正常状态与实测的声纹振动信号频谱图之间的相似度,计算公式:r=i=0N-1[Xi-X][Yi-Y]i=0N-1[Xi-X]2i=0N-1[Yi-Y]2,其中Xi和Yi分别为正常状态与实时测得声纹振动信号的频域分布,X和Y为对应信号的平均值,互相关系数范围为0~1。◆正常运行时,相关系数应接近于1。◆存在故障时,信号频率分布发生改变,互相关系数减小。有载开关声纹振动声学指纹在线监测功能