振动声学指纹在线监测基本参数
  • 品牌
  • 国洲电力
  • 型号
  • GZAF-1000T系列,GZAF-1000S系列
  • 厂家
  • 国洲电力
振动声学指纹在线监测企业商机

电力系统中的开关类设备主要包括GIS、AIS(敞开式断路器)、GIS/敞开式的隔离开关、开关柜断路器等。各类开关设备的材料、工艺、设计、安装过程中的缺陷以及频繁动作极易引起机械故障,严重时更会导致电气火灾、停电等事故,现有状态检修方式的试验周期长、耗费人力物力、检修效率低等缺点,较大地影响设备正常运行。GIS是当今输电网络中一种应用***的电气设备。通过将变电站中断路器、隔离开关、接地开关、PT、CT、避雷器、连接母线、电缆终端、进出线套管等一次设备经过优化设计并有序地结合为整体,在金属壳内封装起来,内部充SF6气体作为灭弧和绝缘介质组成的封闭组合电器。与传统的敞开式相比较,GIS具有占地面积小、可靠性高、安全性强、运行维护工作量很小等优点,因而被大量使用在重要负荷、枢纽变电站中。但由于其采用全封闭结构,一旦发生故障,影响范围大并且难以准确定位及快速抢修,将会带来严重的经济损失。随着GIS逐步在特高压输电网络推广应用,设备故障所造成的影响将进一步加大。杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业应用前景。本地振动声学指纹在线监测监测方法

本地振动声学指纹在线监测监测方法,振动声学指纹在线监测

目前针对GIS较成熟的监测方法,主要有电气法、声测法及化学分析法三大类,以上监测方法均针对的是放电性故障所产生的电磁、声、光、电弧分解产物等物理量。但在GIS的运行中,除了放电性故障之外,机械性故障也是导致事故发生的一大主要原因,当GIS存在开关触头接触异常、壳体对接不平衡、导杆轻微弯曲等缺陷时,在开关操作的机械力、负载电流产生的交变电动力等因素的作用下会产生机械性运动,造成设备异常振动。GIS的异常振动对其本体有很大危害,会造成SF6气体泄露、盆式绝缘子和绝缘支柱损伤、外壳接地点悬浮等缺陷,长期发展可能导致绝缘事故的发生。因此,加强对GIS机械性故障的监测,是保证GIS安全运行的重要手段。电抗器振动声学指纹在线监测参数杭州国洲电力科技有限公司振动声学指纹在线监测技术的市场需求分析。

本地振动声学指纹在线监测监测方法,振动声学指纹在线监测

敞开式断路器监测技术背景实现对断路器机械特性的在线监测,准确得知断路器的工作状态和故障部位,可以有效减小维护工作量,增强状态检修的针对性,显著提高电力系统可靠性和经济性。声纹振动信号、分/合闸线圈及储能电机的电流、动/静触头的行程及分/合闸位置等特征值是断路器非常重要的参数,是衡量断路器性能的重要指标,因此,实施在线监测声纹振动信号、分/闸线圈及储能电机电流、动/静触头行程及分/合闸位置等具有重要意义。

GIS及敞开式的隔离开关监测功能特性◆采用加速度传感器及电流传感器监测隔离开关声纹振动及电机电流信号。◆具有比对分析功能:可将现测与标准/历史的监测数据进行横向/纵向比对分析。◆具有诊断分析功能:可对隔离开关状态进行诊断,并上传原始数据及分析结果。◆具有断电不丢失存储数据、复电自启动、自复位的功能,可连续监测、存储及导出功能,可够存储1000次以上的操作数据,并具备批量处理数据功能。◆具备声纹振动及电机电流信号波形、包络分析、时频图谱等展示功能。◆自动提取动/静触头的分/合闸动作时间、电机峰值电流、电机电流的燃弧时间及抖动高幅值关键特征、声纹振动脉动关键特征等参量。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:接近1时,被测设备是接近正常状态。接近0时,被测设备是可能存在故障的异常状态。杭州国洲电力科技有限公司的企业愿景与使命。

本地振动声学指纹在线监测监测方法,振动声学指纹在线监测

4.1.6通过绕组及铁芯声纹振动信号频谱分析可自动识别峰值频率偏移及谐波增量,实时分析绕组及铁芯运行状态。4.1.7具有自动绘制声纹振动和电流信号的历史数据曲线趋势功能。4.1.8阈值超限告警功能:实时分析信号发展趋势,实现阈值超限自动告警,支持短信发送告警信息。4.1.9智能分析功能:软件内置典型故障特征的数据库,可与监测数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新监测数据,方便后期横向、纵向比较;可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的变压器监测数据曲线进行比对分析。4.1.10具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。GZAFV-01型声纹振动监测系统(开关设备)设计和性能优化。变压器声纹振动声学指纹在线监测指纹图谱

GZAFV-01型声纹振动监测系统(开关设备)监测和综合分析。本地振动声学指纹在线监测监测方法

3.2.1感知层的传感器GZAFV-01系统的感知层如上图3.1所示,由IED/主机、6路声纹振动传感器、1路电流传感器等构成,声纹振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装。各传感器外观及参数如下表1所示。◆3路声纹振动传感器采集取OLTC振动信号,通过固定底座安装在变压器外壁,安装位置选取平行于OLTC的垂直传动杆方向,且尽量靠近OLTC的触头组处。◆1路电流传感器采集OLTC驱动电机电流信号,安装于OLTC驱动电机电源线处。◆3路声纹振动传感器采集变压器绕组及铁芯声纹振动信号,安装位置选取于上夹件底部、非冷却器侧油箱表面中部、油箱顶部中心点。为保持监测点的同一性,便于后期监测数据的时间轴线比对,所有声纹振动传感器底座长期固定在变压器外壁上。安装示意图如下图3.2所示。(备注:传感器安装的数量及位置可根据被测设备的监测需求而灵活调整)本地振动声学指纹在线监测监测方法

与振动声学指纹在线监测相关的**
信息来源于互联网 本站不为信息真实性负责