紫外光激发Ca2+荧光探针:Fura-2和Indo-1都是紫外光激发的双波长Ca2+荧光指示剂,也是目前较常用的比率型钙离子荧光探针。与其他代的荧光指示剂相比,它们的荧光信号更强,对Ca2+的选择性也更强。比率指示剂会在与Ca2+结合后会改变吸收/发射特性。以双波长激发指示剂Fura-2为例。如图2所示,低Ca2+浓度下,Fura-2在~380nm处激发,高Ca2+浓度下,在~340nm处激发。光谱由两个峰组成:左侧较短波长的吸收峰随Ca2+浓度的增加而增大,右侧较长波长的吸收峰随Ca2+浓度的增加而减小。通过340/380nm交替激发,获取在510nm处对应的发射光荧光强度的比率,就可以对Ca2+浓度进行定量的测量。因为Fura-2结果准确,且不易被漂白,所以得到了普遍使用。专业的钙成像显微镜使得钙成像变的直接。北京荧光显微钙成像
钙离子在很多生理性的活动中都发挥着重要作用,除了在肌肉细胞收缩中扮演着重要角色,钙离子也是神经元活动的重要“风向标”之一:当神经元膜电位发生去极化,产生的动作电位传导到神经元轴突末梢时,细胞膜上的电压门控钙离子通道打开,大量钙离子内流,包含神经递质的囊泡由突触前膜释放至后膜,下游神经元就得以接受到上游的信号。因此,钙离子成像可以追踪神经元动作电位,从而帮助我们了解神经元集群的活动,可以用于感知觉,学习记忆,社会性行为等各种各样的研究中。哈尔滨在体钙成像nVoke2.0我们的钙成像系统集成自动控制和精确计时的多模式输入端口。
近年来出现了通过植入性的microscope或microlens进行freelymoving动物钙成像的技术。如光纤成像法:使用一端带有GRINlens的光纤连接显微镜和动物大脑,从特定脑区发出的荧光信号被光纤收集,然后通过相机成像。动物头部只需植入GRINlens,方便活动,而且可以同时植入多个lens来观察不同的脑区之间的联系和相互作用。还有直接植入动物大脑的微型荧光显微镜,将GRINlens直接植入皮层下的海马,下丘脑,丘脑等区域,可以监测深部脑区的神经元活动。这种微型显微镜的重量只有几克,不会影响动物自由活动,可以提供800μm600μm视野和1.50μm横向分辨率。
细胞内钙离子作为重要的信号分子其作用具有时间性和空间性。当个细胞兴奋时,产生了一个电冲动,此时,细胞外的钙离子流入该细胞内,促使该细胞分泌神经递质,神经递质与相邻的下一级神经细胞膜上的蛋白分子结合,促使这一级神经细胞产生新的电冲动。以此类推,神经信号便一级一级地传递下去,从而构成复杂的信号体系,较终形成学习、记忆等大脑的高级功能。在哺乳动物神经系统中,钙离子同样扮演着重要的信号分子的角色。静息状态下大部分神经元细胞内钙离子浓度约为50-100nM,而细胞兴奋时钙离子浓度能瞬间上升10-100倍,增加的钙离子对于突触囊泡胞吐释放神经递质的过程必不可少。众所周知,只有游离钙才具有生物学活性,而细胞质内钙离子浓度由钙离子的内外流平衡所决定,同时也受钙结合蛋白的影响。细胞外钙离子内流的方式有很多种,其中包括电压门控钙离子通道、离子型谷氨酰胺受体、烟碱型胆碱能受体(nAChR)和瞬时受体电位C型通道(TRPC)等。钙离子成像可以追踪神经元动作电位。
传统的宽场荧光显微镜由于光散射的影响,只能够对大脑浅层的神经元或在离体组织上进行成像,共聚焦显微镜由于光损伤较大,一般也只用于离体钙成像。随着荧光显微镜技术的迅速发展,在体钙成像技术得到了蓬勃发展。双光子荧光显微镜能够在进行活动动物成像的时候实现高分辨率和高信噪比。例如,用双光子显微镜对海马树突棘的钙离子信号进行成像,研究神经元突触后长时程yizhi(Wangetal.,2000);观察活动小鼠运动皮层神经元在嗅觉选择任务中刺激相关电位(Komiyamaetal.,2010)等等。不过,这些实验还是需要对动物进行麻醉和固定,而神经科学领域很多研究更希望能够对自由活动的动物进行研究。钙成像技术一出现,就受到了全世界神经科学家们的追捧。美国荧光显微钙成像联系方式
钙成像技术利用钙离子流的优势在活神经细胞上直接可视化钙信号。北京荧光显微钙成像
单光子显微技术是较成熟的荧光显微技术,但由于其使用的激发光波长较短,成像深度有限;能量较大,会造成对荧光物质的漂白,光毒性严重。激光共焦扫描显微镜由于共焦显微镜的孔径很小,实现样本三维成像要逐点扫描,成像速度慢,对样本损害大,很难用于长时间活细胞成像。而宽场显微镜能够很好地实现实时动态成像,光漂白小,因而较早应用于活细胞内的实时检测,但宽场显微镜由于离焦信号的干扰,难以实现多维成像。Derrick想重点介绍一下较为常用的观察设备——双光子荧光显微镜(Two-PhotonLaser-ScanningMicroscopy)。双光子显微成像技术是近些年发展起来的结合了共聚焦激光扫描显微镜和双光子激发技术的一种新型非线性光学成像方法,采用长波激发,能对组织进行深层次成像。常用的比较好激发波长大多位于800-900nm,而水、血液和固有组织发色团对这个波段的光吸收率低,此外散射的激发光子不能激发样品,因此背景第,光损伤小,适用于在体检测。双光子荧光成像技术能准确定位细胞内置入的微电极位置,从而观察胞体、树突甚至单个树突棘的活性。研究者可完整的观察神经组织的分辨荧光图像,甚至可以分辨神经细胞单个树突棘中的钙分布。北京荧光显微钙成像