双光子显微镜基本参数
  • 品牌
  • bruker
  • 型号
  • 齐全
  • 可售卖地
  • 全国
  • 配送方式
  • 空运
双光子显微镜企业商机

WinfriedDenk使用的第1个光源是染料飞秒激光(脉冲宽度100fs,可见光波长630nm)。染料激光虽然实验室演示可以接受,但是使用起来不方便,所以离商业化还很远。很快双光子显微镜的标准光源变成了飞秒钛宝石激光器。钛宝石激光器除了具有固态光源的优点外,还具有近红外波长调谐范围宽,而近红外比可见光穿透更深,对生物样品的损伤更小。下图是Thorlabs的双光子和三光子显微镜配置,钛宝石飞秒可调谐激光器位于平台左侧。从双光子到三光子科学家们正在从双光子显微镜转向三光子显微镜。1996年,ChrisXu在康奈尔大学(Denk的导师实验室)读博时发明了三光子显微镜。如果双光子吸收是可行的,那么三光子似乎是自然的发展方向。三光子成像使用更长的波长,大约1.3和1.7微米,成像深度比双光子更深。目前录音大约2.2毫米,人的大脑皮层厚度大约4毫米。与双光子显微镜相比,三光子需要使用更强、更短、重复率更低的激光脉冲,这是传统的钛宝石激光器很难满足的,但对于掺镱光纤飞秒光参量放大器,比如我们的Y-Fi光参量放大器(OPA)就非常容易。双光子显微镜能够进行指标成像;国外双光子显微镜作用

国外双光子显微镜作用,双光子显微镜

基因编码的荧光探针可用于在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。双光子显微镜(2PM)可以对钙离子传感器和谷氨酸传感器进行亚细胞分辨率的成像,从而测量不透明脑深部的活动。成像膜的电压变化可以直接反映神经元的活动,但神经元活动的速度对于常规的2PM来说太快了。目前,电压成像主要由宽视场显微镜实现,但其空间分辨率较差,且只能在浅深度成像。因此,为了以高空间分辨率成像不透明脑中膜电压的变化,需要将成像速率提高2PM。面向模块输出端的子脉冲序列可视为从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成空间分离和时间延迟的聚焦阵列。然后,该模块被集成到一个带有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是重复频率为1MHz的920nm激光器。FACED模块可以产生80个脉冲焦点,脉冲时间间隔为2ns。这些焦点是虚拟源的图像。虚光源越远,物镜处的光束尺寸越大,焦点越小。光束可以沿Y轴比沿X轴更好地填充物镜,从而在X轴上产生0.82m和0.35m的横向分辨率。国内investigator双光子显微镜联系方式用双光子显微镜看看你的皮肤有没有重焕新生。

国外双光子显微镜作用,双光子显微镜

双光子吸收理论早在1931年就由诺奖得主MariaGoeppertMayer提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。

目前,脑科学的研究在全球范围内如火如荼,中国的脑计划也即将启动。其中,全景式分析脑连接图和功能动态图的研究成为重点研究方向,如何打破尺度壁垒,将微观神经元和突触的信息处理和个体行为信息与全脑融合,是该领域亟待解决的关键挑战。2021年1月6日,由北京大学分子医学研究所牵头,北京大学信息科学与技术学院电子系、工程学院和中国人民医学科学院组成的跨学科团队在NatureMethods上在线发表了一篇题为《大视场、多平面、长程脑成像的微型双光子拷贝》的文章。本文报道了第二代小型化双光子荧光显微镜FHIRM-TPM2.0。其成像视场是团队2017年发布的第1代小型化显微镜的7.8倍。同时具有三维成像能力,获得了小鼠自由运动行为时大脑三维区域数千个神经元清晰稳定的动态功能图像,实现了对同一批次神经元一个月的跟踪记录。双光子显微镜还可以对一些具有双光子特性的染料细胞进行特定实验;

国外双光子显微镜作用,双光子显微镜

而配合了双光子激发技术,激光共聚扫描显微镜则能更好得发挥功效。那么,什么是双光子激发技术呢?在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子使电子跃迁到较高能级,经过一个很短的时间后,电子再跃迁回低能级同时放出一个波长为长波长一半的光子(P=h/λ)。利用这个原理,便诞生了双光子激发技术。双光子显微镜使用长波长脉冲激光,通过物镜汇聚,由于双光子激发需要很高的光子密度,而物镜焦点处的光子密度是比较高的,所以只有在焦点处才能发生双光子激发,产生荧光,该点产生的荧光再穿过物镜,从而被光探头接收,从而达到逐点扫描的效果。双光子显微镜在生物医学研究中有广泛的应用,可以观察细胞内的亚细胞结构、蛋白质分布、细胞活动等。激光双光子显微镜光子探测

双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子。国外双光子显微镜作用

在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为“参考波前”。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以“分解”得到被调制的每一块子区域的“光线”的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。国外双光子显微镜作用

与双光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责