多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

Ca2+是重要的第二信使,对于调节细胞的生理反应具有极其重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的Ca2+梯差即所谓的空间Ca2梯差。光子显微镜是一种使用可见光或近红外光的显微镜。激光扫描多光子显微镜设备

激光扫描多光子显微镜设备,多光子显微镜

与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整大脑深处神经的了解与认识。2019年,JeromeLecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度比较好的方法是用更长的波长作为激发光。离体多光子显微镜技术多光子显微镜销售渠道分析及建议。

激光扫描多光子显微镜设备,多光子显微镜

双光子显微镜工作原理是将超快的红外激光脉冲传输到样品中,在样品中与组织或荧光标记相互作用,这些组织或荧光标记发出用于创建图像的信号。双光子显微镜被多用于生物学研究,因为它能够产生高分辨率的3-D图像,深度达1毫米。然而,这些优点带来了有限的成像速度,因为微光条件需要逐点图像采集和重建的点检测器。为了加快成像速度,科学家之前开发了一种多焦点激光照明方法,该方法使用数字微镜设备(DMD),这是一种通常用于投影仪的低成本光扫描仪。此前人们认为这些DMD不能与超快激光一起工作。然而现在解决了这个问题,这使得DMD在超快激光应用中得以应用,这些应用包括光束整形、脉冲整形、快速扫描和双光子成像。DMD在样品内随机选择的位置上产生5到30点聚焦激光。

现代分子生物学技术的迅速发展和科技的进步,特别是随着后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,为在体研究基因表达规律、分子间的相互作用、细胞的增殖、细胞信号转导、诱导分化、细胞凋亡以及新的血管生成等提供了良好的生物学条件。然而,尽管人们利用现有的分子生物学方法,已经对基因表达和蛋白质之间的相互作用进行了深入、细致的研究,但仍然不能实现对蛋白质和基因活动的实时、动态监测。在细胞的生理过程中,基因、尤其是蛋白质的表达、修饰和相万作用往往发生可逆的、动态的变化。目前的分子生物学方法还不能捕获到蛋白质和基因的这些变化,但获取这些信息对与研究基因的表达和蛋白质之间的相互作用又至关重要。因此,发展能用于、动态、实时、连续监测蛋白质和基因活动的方法是非常必要的。国内市场多光子显微镜销售渠道。

激光扫描多光子显微镜设备,多光子显微镜

随着生物分子光学标记技术的不断进步,光学技术在揭示生命活动基本规律的研究中正发挥越来越重要的作用,也为医学诊疗提供了更多、更有效的手段。生物医学光学是近年来受到国际光学界和生物医学界关注的研究热点,在生物活检、光动力、细胞结构与功能检测、基因表达规律的在体研究等问题上取得了一系列研究成果,目前正在从宏观到微观上对大脑活动与功能进行多层面的研究。细胞重大生命活动(包括细胞增殖、分化、凋亡及信号转导)的发生和调节是通过生物大分子间(如蛋白质-蛋白质、蛋白质-核酸等)相互作用来实现的。蛋白质作为基因调控的产物,与细胞和机体生理过程代谢直接相关,深入研究基因表达及蛋白质-蛋白质相互作用不仅能揭示生命活动的基本规律,同时也能深入了解疾病发生的分子机理,进而为寻找更有效的药物分子、提高药物筛选和药物设计的效率提供新的方法和思路。光子显微成像技术不是什么新技术,早在20多年前就有了,目前已经在生命科学和材料科学中广泛应用。布鲁克多光子显微镜单分子成像定位

高精度、低损伤、高速扫描,多光子显微镜为科研工作提供强大支持。激光扫描多光子显微镜设备

多束扫描技术可以同时对神经元组织的不同位置进行成像。该技术:对于两个远程成像位置(相距1-2mm以上),通常采用两个**的路径进行成像;对于相邻区域,通常使用单个物镜的多个光束进行成像。多光束扫描技术必须特别注意激发光束之间的串扰,这可以通过事后光源分离或时空复用来解决。事后光源分离法是指分离光束以消除串扰的算法;时空复用法是指同时使用多个激发光束,每个光束的脉冲在时间上被延迟,使不同光束激发的单个荧光信号可以暂时分离。引入的光束越多,可以成像的神经元越多,但多束会导致荧光衰减时间重叠增加,从而限制了分辨信号源的能力;并且复用对电子设备的工作速度要求很高;大量的光束也需要较高的激光功率来维持单束的信噪比,这样容易导致组织损伤。激光扫描多光子显微镜设备

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责