双光子显微镜(2PM)可以对钙离子传感器和谷氨酸传感器进行亚细胞分辨率的成像,从而测量不透明脑深部的活动。成像膜的电压变化可以直接反映神经元的活动,但神经元活动的速度对于常规的2PM来说太快了。目前,电压成像主要由宽视场显微镜实现,但其空间分辨率较差,且只能在浅深度成像。因此,为了以高空间分辨率成像不透明脑中膜电压的变化,需要将成像速率提高2PM。面向模块输出端的子脉冲序列可视为从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成空间分离和时间延迟的聚焦阵列。然后,该模块被集成到一个带有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是重复频率为1MHz的920nm激光器。FACED模块可以产生80个脉冲焦点,脉冲时间间隔为2ns。这些焦点是虚拟源的图像。虚光源越远,物镜处的光束尺寸越大,焦点越小。光束可以沿Y轴比沿X轴更好地填充物镜,从而在X轴上产生0.82m和0.35m的横向分辨率。双光子显微镜比单光子共聚焦显微镜较大的不同在于无须使用孔限制光学散射。进口investigator双光子显微镜图像对比度
n掺杂可以明显影响碳点(CDs)的发射和激发特性,使双光子碳点(TP-CDs)具有本征双光子激发特性和605nm红光发射特性。在638nm激光的照射下,除了长波激发和发射外,还能产生活性氧,这为光动力技术提供了极大的可能性。更重要的是,各种表征和理论模拟证实了掺杂诱导的N杂环在TP-CDs与RNA的亲和力中起着关键作用。这种亲和力不仅可以实现核仁特异性的自我靶向,还可以通过ROS断裂RNA链来解离TP-CDs@RNA复合物,从而在治疗过程中产生荧光变化。TP-CDs结合了ROS产生的能力、PDT过程中的荧光变化、长波激发和发射特性以及核仁特异性自靶向性,因此可以认为是一种实时处理核仁动态变化的智能CDs。美国ultimainvestigator双光子显微镜双光子显微镜为什么穿透能力强?
其实电子显微镜相比光学显微镜的重要优势或意义不在于放大倍数,而在于超高的分辨率。这两者是不同的。一般来说,观察时,除了放大物体外,还需要将其与其他相邻物体区分开来。如果两个相邻粒子的图像在光学显微镜下,即使放大很大程度,也可能看到两个相交的亮点(艾里斑),没有明显的边界(更不用说细节了),说明分辨率不够。没有分辨率谈放大是没有意义的。光学显微镜的分辨率极限是阿贝极限,大约是光波波长的一半。通常称之为光学显微镜的放大极限,但准确的说应该叫分辨率极限。原因是光的衍射,根本原因是光的波粒二象性。电子衍射实验证明了电子的波动性,所以在电子显微镜中用电子代替光是可能的。电子显微镜也有很多种,被摄体像REM。也有根据衍射规律观察的电子显微镜,如低能电子衍射(LEED)和透射电子显微镜(TEM)。两者主要用于观察晶体,根据晶体的周期特性在倒易空间产生衍射像,借助埃尔沃德球或傅里叶变换将其变换到实空间,即可得到真实的晶体表面像。
双光子显微成像的在生物医学研究和医疗领域应用有较大的应用前景,首先双光子显微镜能够进行细胞和组织结构成像,在亚微米级成像,此功能与目前市场上的共聚焦类显微镜性能类似;双光子显微成像能够实时、在体、原位、无创地,根据不同物质组份的光谱特性,区分成像;双光子显微镜能够进行生化指标成像,在无造影剂的前提下,利用自发荧光、二次谐波、荧光获得活细胞生化信息。双光子显微镜技术在医疗诊断应用中具有巨大的潜力,该领域还未形成标准和体系,需要系统的医学研究与庞大的医疗数据加以支撑,通过研究人体基于多光子成像技术,进行细胞结构、生化成分、微环境、组织形态、代谢功能的影响信息,找到与疾病的细胞学、分子生物学、组织病理学、诊断和***特征的关联关系,共同探究生理病理基础和分子细胞生物学机制,筛选鉴定**、皮肤病、自身免疫病及其他疑难疾病的诊断及鉴别诊断依据,建立全新的多光子细胞诊断的完整数据库,定义出针对不同疾病的多光子临床检测设备的产品标准。优势来源于其双光子光源的非线性光学效应。
双光子显微成像技术不是什么新技术,早在20多年前就有了,目前已经在生命科学和材料科学中广泛应用。几年前双光子过期后,已经推出自己的双光子显微镜的厂家估计不少于10家以上。即便如此,世界上很多实验室都搭双光子,自己搭的好处有很多,首先是便宜,尤其是实验室已经有飞秒激光器,那就更很省钱了。其次是灵活,可以选择针对特殊用途的搭配,改动也灵活。好处就是可以锻炼队伍,一趟走下来可以把新手带出来,后期维护也更加自由。当然坏处也不少,首先是操心,特别是第1次搭的时候,开始要想方案,后来要解决各种实际问题。其次是花时间,加上买配件的时间,比买一台现成的商业化双光子耗时长。现在已经有不少关于如何搭双光子显微镜的文章,各种protocol,大多是老外写的,中文的较少。其实完全自己搭一套好用的系统还是不容易的,尤其是没有经验的时候,容易走弯路,多花钱,也多花时间,再加上双光子的重要器件都需要从国外购买,在国内买这些东西耗时较长。因此,我想总结一下我们的经验,贴出来分享,希望能帮到想自己动手的实验室,双光子显微镜使用高能量锁模脉冲激光器。荧光激光双光子显微镜商家
双光子显微镜使用方法是什么?进口investigator双光子显微镜图像对比度
从双光子的原理和特点,我们可以清楚地得出双光子的优点:☆光损伤小:由于双光子显微镜采用可见光或近红外光作为激发光源,因此该波段的光对细胞和组织的光损伤很小,适合长期研究;☆穿透能力强:与紫外光相比,可见光和近红外光的穿透能力更强,因此受生物组织散射的影响更小,解决了生物组织深层物质的层析成像问题;☆高分辨率:由于双光子吸收的截面很小,只能在焦平面很小的区域激发荧光,双光子吸收被限制在焦点处体积约为波长三次方的范围内;☆漂白区域小:由于激发只存在于交点处,焦点外的区域不会发生光漂白;☆荧光收集率高:与共焦成像相比,双光子成像不需要滤光片(共焦),提高了荧光收集率,直接导致图像对比度的提高;☆图像对比度高:由于荧光波长小于入射波长,瑞利散射产生的背景噪声*为单光子激发产生的1/16,减少了散射的干扰;光子跃迁具有很强的选择性激发,因此可以用来对生物组织中的一些特殊物质进行成像;进口investigator双光子显微镜图像对比度