配合双光子激发技术,激光共聚扫描显微镜则能更好得发挥功效。那么,什么是双光子激发技术呢?在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子使电子跃迁到较高能级,经过一个很短的时间后,电子再跃迁回低能级同时放出一个波长为长波长一半的光子(P=h/λ)。利用这个原理,便诞生了双光子激发技术。双光子显微镜使用长波长脉冲激光,通过物镜汇聚,由于双光子激发需要很高的光子密度,而物镜焦点处的光子密度是比较高的,所以只有在焦点处才能发生双光子激发,产生荧光,该点产生的荧光再穿过物镜,被光探头接收,从而达到逐点扫描的效果。双光子显微镜在生物医学研究中有广泛的应用,可以观察细胞内的亚细胞结构、蛋白质分布、细胞活动等。美国激光荧光双光子显微镜扫描深度
随着技术的发展,双光子显微镜的性能不断优化。结合其特点,大致可以分为两个方面:深入和主动改进。为了使激发激光进入更深的层次,可以从器件优化和标本改造两个方面入手。关于器件的优化,我们可以把激光束做得更细,集中能量,让激光穿透得更深。对于样品,物质的吸收和散射是影响光传播的主要因素。为了解决这个问题,我们需要将样本透明化。一种方法是用某种物质浸泡标本,使其中的物质(主要是脂质)被破坏或溶解。另一种方法是通过电泳电解脂类,从而提高标本的“透明度”。进口荧光激光双光子显微镜价格双光子显微镜观察到的现象证明了钙离子的增加依赖于肌体触发的钠离子作用电势。
通过对微型光学系统的重新设计,FHIRM-TPM2.0成像视野扩大至420×420平方微米,微型物镜的工作距离扩展至1毫米,以实现非侵入式成像;嵌入了可拆卸的快速轴向扫描模块,实现了180微米深度的三维体成像和多平面快速切换的实时成像。该模块由一个快速的电动变焦透镜和一对中继透镜组成,在不同深度成像时保持放大倍率恒定。其中,变焦模块重量1.8克,研究人员可根据实验需求自由拆卸。此外,新版微型化成像探头还可整体即时拔插,极大地简化了实验操作,避免了长周期实验时对动物的干扰。在重复装卸探头追踪同一批神经元时,视场旋转角小于0.07弧度,边界偏差小于35微米。
2020年,临研所、病理科和科研处邀请北京大学王爱民副教授做了题目为“新一代微型双光子显微成像系统介绍及其在临床医疗诊断”的学术报告。学术报告由临研所医学实验研究平台潘琳老师主持。王爱民,北京大学信息科学技术学院副教授,毕业于北京大学物理系,获学士、硕士学位,后于英国巴斯大学物理系获博士学位。该研究组研发的微型双光子显微镜,第1次在国际上获得了小鼠大脑神经元和神经突触清晰稳定的动态信号,该成果获得了2017年度“中国光学进展”和“中国科学进展”,并被NatureMethods评为2018年度“年度方法--无限制行为动物成像”。目前,该研究组正在研究新一代双光子显微成像技术在临床诊断中的应用,为未来即时病理、离体组织检测、术中诊断等提供新的影像手段和分析方法。双光子显微镜使用高能量锁模脉冲器。
许多生物医学成像方式,无论是单光子(共聚焦)或多光子(双光子),都使用激光作为光源,并需要兼容的荧光染料。荧光染料有自己的激发波长,它们可以被单个光子以该激发波长的光子能量激发(E=hv=h*c/λ);或者是两个几乎同时到达的光子,但每个光子的能量约为单光子能量的一半,即双波长(0.5E->2λ)。前者是单光子显微镜原理,后者是双光子显微镜原理。在对同一种荧光染料进行成像时,双光子与单光子相比可以使用约两倍波长,因此双光子的散射较小(波长较长,散射较小),可以更深入地渗透到组织中。双光子显微镜角膜成像。国内荧光双光子显微镜的原理
双光子显微镜大量运营在实验室当中;美国激光荧光双光子显微镜扫描深度
生物样品的三维观察是了解细胞功能的重要方法之一。目前已有的三维荧光成像技术有光学显微镜、点阵照明和激光扫描显微镜(如共焦显微镜和双光子显微镜)。其中,激光扫描显微镜利用转盘可以进行多焦点激光扫描,提高了时间分辨率,有利于减少活细胞成像中的光损伤。本文主要实现可见光双光子激发和多焦点激光扫描的结合,**终提高三维延迟扫描中的空间分辨率和成像对比度,这也是可见光双光子激发(v2PE)在超高分辨率显微镜中的应用。美国激光荧光双光子显微镜扫描深度