钙是机体的组成元素之一。钙离子作为电流载体维持细胞内外的电化学梯度,同时在细胞的生命活动中扮演着重要角色。作为第二信使,钙参与细胞周期、细胞代谢、细胞分化、坏死、凋亡等等许多重要的生理过程。细胞内的钙离子水平通常很低,一般胞浆中的自由钙约为100nM。胞内的钙可被各种亚细胞器所贮存,据文献报道:其中约50%位于细胞核,30%位于线粒体,14%位于内质网,5%位于胞膜上,1%位于胞质内,且因为钙离子易与磷酸和碳酸复合物形成不溶物,故游离钙只占[1]。细胞可以通过钙内流、内钙释放及膜系统上的降钙蛋白等一整套完整的监控系统来维持细胞内钙的内稳状态。例如与钙内流相关的通道例如电压门控性钙离子通道VDCC、受体活跃的通道RACC;与内钙释放相关的受体如内质网上的IP3受体;以及降钙相关的脂膜及线粒体上的主动运输的钙泵系统等等[2]。近20年来钙的荧光成像及测定技术发展迅速,出现了各种各样的钙荧光指示剂,结合不断发展的显微成像系统,我们可以对活细胞的钙离子进行测定及成像,进一步揭示其生理机制及相关疾病的发病机制。钙成像的荧光指示剂钙成像的荧光探针一般均为Ca2螯合剂EGTA,APTRA,BAPTA的衍生物,它们可以结合钙离子从而显示一个光谱响应。钙离子在很多生理活动中都发挥着重要作用。哈尔滨神经元钙成像代理
包含钙离子指示剂的细胞可以通过荧光显微镜(fluorescencemicroscope)观测,然后通过CCD摄像机捕捉、记录图像。现在钙成像技术主要在以下几类神经科学研究方面有广泛应用:1.记录培养的神经元的活动。2.记录脑片上神经元的活动。记录神经元的活动。由于离体实验本身的限制,现在越来越多的神经方面科学家倾向于做在体钙成像实验,希望能得到更准确且更能反应生理状况的数据。得益于双光子荧光显微镜的发展,现在在实验动物处于huoti状态下的钙成像技术取得了飞速进展。4.记录神经元树突和树突棘(spine)的活动。由于对于实验精度的要求,有些科学家不仅只想记录单个神经元的反应,他们还想更确切地知道神经元上哪些树突和树突棘参与了某个行为,也就是说他们需要在huoti条件下,对单根树突以及某些spine进行钙成像记录实验。由于双光子荧光显微镜和GCaMP6基因编码钙离子指示剂的发展,现在,对树突和树突棘用钙成像实验进行记录也成为了可能。荧光钙成像inscopix钙信号在大脑皮层中更能反映神经元的活性,因此神经元钙信号的检测对研究大脑皮层功能至关重要。
对新环境的探索确保了生存和进化的适应性,这是通过根据经验动态变化的探索性回合和逮捕来表达的。因此,调节探索性行为的神经环路应该参与经验的整合,并利用它来选择适当的行为输出。通过空间探索分析,研究人员发现在之前动物被逮捕的地点,瞬间逮捕数随着经验的增加而增加。在自由探索的小鼠身上进行的Inscopix钙成像显示,基底外侧杏仁核中有一个遗传和投射定义的神经元群,在自我控制的行为停止期间是活跃的。这个合集是以经验依赖的方式响应的,对这些神经元的nVoke闭环光遗传操作表明,它们在探索过程中驱动经验依赖的逮捕是充分和必要的。投影特异性成像和光遗传学实验显示,这些yizhi是由投射到**杏仁核的基底外侧杏仁核神经元影响的,揭示了杏仁核环路,该回路介导了熟悉部位的短暂阻止,但不影响回避或焦虑/恐惧样行为。
钙离子成像系统:传统的宽场荧光显微镜由于光散射的影响,只能够对大脑浅层的神经元或在离体组织上进行成像,共聚焦显微镜由于光损伤较大,一般也只用于离体钙成像。随着荧光显微镜技术的迅速发展,在体钙成像技术得到了蓬勃发展。双光子荧光显微镜能够在进行成像的时候实现高分辨率和高信噪比。例如,用双光子显微镜对海马树突棘的钙离子信号进行成像,研究神经元突触后长时程控制(Wangetal.,2000);观察小鼠运动皮层神经元在嗅觉选择任务中刺激相关电位(Komiyamaetal.,2010)等等。不过,这些实验还是需要对动物进行麻醉和固定,而神经科学领域很多研究更希望能够对自由活动的动物进行研究。近年来出现了通过植入性的microscope或microlens进行freelymoving动物钙成像的技术。如图6中所示的光纤成像法:使用一端带有GRINlens的光纤连接显微镜和动物大脑,从特定脑区发出的荧光信号被光纤收集,然后通过相机成像。动物头部只需植入GRINlens,方便活动,而且可以同时植入多个lens来观察不同的脑区之间的联系和相互作用。不过这种成像方法的视野较小,分辨率也比较差。钙是模型动物神经细胞内重要的第二信使,参与细胞多种功能的调节,可以产生多种细胞内信号。
细胞内钙离子作为重要的信号分子其作用具有时间性和空间性。当di 1个细胞兴奋时,产生了一个电冲动,此时,细胞外的钙离子流入该细胞内,促使该细胞分泌神经递质,神经递质与相邻的下一级神经细胞膜上的蛋白分子结合,促使这一级神经细胞产生新的电冲动。以此类推,神经信号便一级一级地传递下去,从而构成复杂的信号体系,*终形成学习、记忆等大脑的高级功能。在哺乳动物神经系统中,钙离子同样扮演着重要的信号分子的角色。静息状态下大部分神经元细胞内钙离子浓度约为50-100nM,而细胞兴奋时钙离子浓度能瞬间上升10-100倍,增加的钙离子对于突触囊泡胞吐释放神经递质的过程必不可少。众所周知,只有游离钙才具有生物学活性,而细胞质内钙离子浓度由钙离子的内外流平衡所决定,同时也受钙结合蛋白的影响。细胞外钙离子内流的方式有很多种,其中包括电压门控钙离子通道、离子型谷氨酰胺受体、烟碱型胆碱能受体(nAChR)和瞬时受体电位C型通道(TRPC)等。神经元钙成像的原理就是利用特殊的荧光染料或钙离子指示剂将神经元中钙离子浓度的变化通过荧光强度表现出来,以反映神经元活性。该方法可以同时观察多个功能或位置相关的脑细胞。钙成像系统具有单细胞分辨率的大视野的特征。江苏inscopix钙成像供应商
钙成像技术(calcium imaging)是指利用钙离子指示剂监测组织内钙离子浓度的方法。哈尔滨神经元钙成像代理
紫外光激发Ca2+荧光探针Fura-2和Indo-1都是紫外光激发的双波长Ca2+荧光指示剂,也是目前较常用的比率型钙离子荧光探针。与其他代的荧光指示剂相比,它们的荧光信号更强,对Ca2+的选择性也更强。比率指示剂会在与Ca2+结合后会改变吸收/发射特性。以双波长激发指示剂Fura-2为例。如图2所示,低Ca2+浓度下,Fura-2在~380nm处激发,高Ca2+浓度下,在~340nm处激发。光谱由两个峰组成:左侧较短波长的吸收峰随Ca2+浓度的增加而增大,右侧较长波长的吸收峰随Ca2+浓度的增加而减小。通过340/380nm交替激发,获取在510nm处对应的发射光荧光强度的比率,就可以对Ca2+浓度进行定量的测量。因为Fura-2结果准确,且不易被漂白,所以得到了普遍使用。哈尔滨神经元钙成像代理
因斯蔻浦(上海)生物科技有限公司位于中山北路1759号浦发广场D座803,拥有一支专业的技术团队。致力于创造***的产品与服务,以诚信、敬业、进取为宗旨,以建Inscopix,envisionTEC,rokit,piezosleep,stoeltingco,unipick,neuronexus,scientifica,alphaomega,divescope,invivo产品为目标,努力打造成为同行业中具有影响力的企业。公司坚持以客户为中心、生物科技,医药科技领域内的技术开发、技术咨询、技术服务、技术转让,实验室设备、仪器仪表、医疗器械、计算机、软件及辅助设备销售,计算机数据处理,货物及技术进出口业务。 成像平台: 1. Inscopix自由活动超微显微成像系统 2. DiveScope多通道内窥镜系统 3. 双光子显微镜 动物行为学平台: 1. PiezoSleep无创睡眠检测系统 2. 自身给药、条件恐惧、斯金纳、睡眠剥夺、跑步机、各类经典迷宫等 神经电生理: 1.NeuroNexus神经电极 2.多通道电生理信号采集系统 3.膜片钳系统 4.AO功能神经外科临床电生理平台 显微细胞: 1. UnipicK单细胞挑选及显微切割系统 科研/临床级3D打印 1. 德国envisionTEC 3D Bioplotter生物打印机 2. 韩国Invivo医疗级生物打印机等。市场为导向,重信誉,保质量,想客户之所想,急用户之所急,全力以赴满足客户的一切需要。滔博生物始终以质量为发展,把顾客的满意作为公司发展的动力,致力于为顾客带来***的nVista,nVoke,3D bioplotte,invivo。