一次绕组可调,二次多绕组电流互感器。这种电流互感器的特点是变比量程多,而且可以变更,多见于高压电流互感器。其一次绕组分为两段,分别穿过互感器的铁心,二次绕组分为两个带抽头的、不同准确度等级的独自绕组。一次绕组与装置在互感器外侧的连接片连接,通过变更连接片的位置,使一次绕组形成串联或并联接线,从而改变一次绕组的匝数,以获得不同的变比。带抽头的二次绕组自身分为两个不同变比和不同准确度等级的绕组,随着一次绕组连接片位置的变更,一次绕组匝数相应改变,其变比也随之改变,这样就形成了多量程的变比。测试齿条齿轮传动系统中,行星齿轮机械参数的长期稳定性。北京激光干涉仪仪器
在光电效应中,要释放光电子显然需要有足够的能量。根据经典电磁理论,光是电磁波,电磁波的能量决定于它的强度,即只与电磁波的振幅有关,而与电磁波的频率无关。而实验规律中的较早、第二两点显然用经典理论无法解释。第三条也不能解释,因为根据经典理论,对很弱的光要想使电子获得足够的能量逸出,必须有一个能量积累的过程而不可能瞬时产生光电子。光电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。所有这些实际上已经曝露出了经典理论的缺陷,要想解释光电效应必须突破经典理论粗糙度激光干涉仪色散共焦但IDS3010干涉仪可诊断非接触式pm位移@ 10 MHz 安装的高功率激光反射镜。
工作原理:在供电用电的线路中,电流相差从几安到几万安,电压相差从几伏到几百万伏。线路中电流电压都比较高,如直接测量是非常危险的。为便于二次仪表测量需要转换为比较统一的电流电压,使用互感器起到变流变压和电气隔离的作用。显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的。随着时代发展,电量测量大多已经达到数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。
薄膜型半导体应变片
这种应变片是利用真空沉积技术将半导体材料沉积在带有绝缘层的试件上或蓝宝石上制成的。它通过改变真空沉积时衬底的温度来控制沉积层电阻率的高低,从而控制电阻温度系数和灵敏度系数。因而能制造出适于不同试件材料的温度自补偿薄膜应变片。薄膜型半导体应变片吸收了金属应变片和半导体应变片的优点,并避免了它的缺点,是一种较理想的应变片。
外延型半导体应变片
这种应变片是在多晶硅或蓝宝石的衬底上外延一层单晶硅而制成的。它的优点是取消了P-N结隔离,使工作温度大为提高(可达300℃以上)。 探头安装 在线性导轨上,在一个轴上移动探头,而线性导轨则集成在一个桥中。
数控转台分度精度的检测:数控转台分度精度的检测及其自动补偿现在,利用ML10激光干涉仪加上RX10转台基准还能进行回转轴的自动测量。它可对任意角度位置,以任意角度间隔进行全自动测量,其精度达±1。新的国际标准已推荐使用该项新技术。它比传统用自准直仪和多面体的方法不仅节约了大量的测量时间,而且还得到完整的回转轴精度曲线,知晓其精度的每一细节,并给出按相关标准处理的统计结果。知晓其精度的每一细节,并给出按相关标准处理的统计结果。检测轴承误差在±5μm之间,由轴承误差引起。北京皮米精度激光干涉仪
传感器头适用于极端环境: 低温和高温(比较高450°C),UHV兼容性, 强辐射(高达10MGy)和高磁场。北京激光干涉仪仪器
结构原理:普通电流互感器结构原理:电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电源线路中,一次负荷电流(I1)通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流(I2);二次绕组的匝数(N2)较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电流比电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。北京激光干涉仪仪器