双光子显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双(多)光子成像优势在于,具有更深的组织穿透深度,利用红外光,能够在层面检测极限达1mm的组织区域;因信号背景比高,而具有更高的对比度;因激发体积小,具有定点激发的特性,具有更少的光毒性;激发波长由紫外、可见光调整为红外激发,能够更加安全。双光子显微镜在各领域研究中已有许多成功实例;荧光双光子显微镜荧光寿命计数
目前,世界各国的脑科学研究如火如荼,中国的脑计划也即将启动。其中,关于全景式解析脑连接图谱和功能动态图谱的研究成为重点研究方向,而如何打破尺度壁垒,融合微观神经元和神经突触活动与大脑整体的信息处理和个体行为信息,是领域内亟待解决的一个关键挑战。2021年1月6日,由北京大学分子医学研究所牵头,联合北大信息科学技术学院电子学系、工学院以及中国人民******医学科学院等组成的跨学科团队,在NatureMethods在线发表题为“Miniaturetwo-photonmicroscopyforenlargedfield-of-view,multi-plane,andlong-termbrainimaging”的文章。文中报道了第二代微型化双光子荧光显微镜FHIRM-TPM2.0,其成像视野是该团队于2017年发布的低1代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。国内2PPLUS双光子显微镜多少钱双光子显微镜有这么多优点,那么双光子显微镜有哪些应用呢?
王爱民副教授结合工作实例,展示了双光子显微镜的研发与应用。历经3年多的协同奋战,成功研制新一代高速分辨微型化双光子荧光显微镜,重量只为2.2克,这一微型显微镜获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像,该显微镜适于佩戴在小动物头部,可实时记录数十个神经元、上千个神经突触的动态信号,在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。双光子显微成像的在生物医学研究和医疗领域应用有较大的应用前景,首先双光子显微镜能够进行细胞和组织结构成像,在亚微米级成像,此功能与目前市场上的共聚焦类显微镜性能类似;双光子显微成像能够实时、在体、原位、无创地,根据不同物质组份的光谱特性,区分成像;双光子显微镜能够进行生化指标成像,在无造影剂的前提下,利用自发荧光、二次谐波、荧光获得活细胞生化信息。
双光子显微成像技术不是什么新技术,早在20多年前就有了,目前已经在生命科学和材料科学中广泛应用。几年前双光子**过期后,已经推出自己的双光子显微镜的厂家估计不少于10家以上。即便如此,世界上很多实验室都搭双光子,自己搭的好处有很多,首先是便宜,尤其是实验室已经有飞秒激光器,那就更很省钱了。其次是灵活,可以选择针对特殊用途的搭配,改动也灵活。结束后的好处就是可以锻炼队伍,一趟走下来可以把新手带出来,后期维护也更加自由。当然坏处也不少,首先是操心,特别是第1次搭的时候,开始要想方案,后来要解决各种实际问题。其次是花时间,加上买配件的时间,比买一台现成的商业化双光子耗时长。现在已经有不少关于如何搭双光子显微镜的文章,各种protocol,大多是老外写的,中文的较少。其实完全自己搭一套好用的系统还是不容易的,尤其是没有经验的时候,容易走弯路,多花钱,也多花时间,再加上双光子的重要器件都需要从国外购买,在国内买这些东西耗时较长。因此,我想总结一下我们的经验,贴出来分享,希望能帮到想自己动手的实验室在深度组织中以较长时间对细胞成像,双光子显微镜是当前之选。
双光子吸收理论早在1931年就由诺奖得主MariaGoeppertMayer提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。如果已经有了飞秒光,就可以几套双光子显微镜共享一台,只需分光即可。荧光激光双光子显微镜光损伤
双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子。荧光双光子显微镜荧光寿命计数
随着技术的发展,双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两个方面的提升。要想让激发激光进入更深的层面,大致可从两个方面入手,装置优化与标本改造。关于装置优化,我们可以把激光束变得更细,使能量更加集中,就能让激光穿透更深。关于标本,其中影响光传播的主要是物质吸收和散射,解决这个问题,我们需要对样本进行透明化处理。一种方法是运用某种物质将标本浸泡,使其中的物质(主要是脂质)被破坏或溶解。另一种方法是运用电泳将脂质电解,让标本“透明度”提高。荧光双光子显微镜荧光寿命计数