通过与麻省理工学院的合作关系,CN-Bio从麻省理工学院生物工程系的器官芯片先锋和长期合作者琳达·格里菲斯教授(LindaGriffith教授的团队近期发布了使用该系统的发现)和东北大学的联合技术持有人丽贝卡·卡利教授处获得了GuMI设备的许可。在实验室中模拟人体微生物组是一项挑战,特别是因为它的数千株细菌中有许多在暴露于氧气中时无法生长或存活。基于动物和体外细胞的模型为这一研究领域提供了一些见解,然而,到目前为止,还没有一个系统用于长期体外共培养结肠粘膜屏障,以支持这些高度氧敏感微生物的生长。GuMI装置使研究人员能够精确控制系统内的氧气水平,使厌氧细菌能够在肠道屏障上方的粘液层中生长,这与人类的生理学非常相似。微泵循环细胞培养基,以确保细胞得到营养,并从系统中去除细菌,以进行微生物组的特定分析。利用器官芯片将原代细胞、干细胞培养提升到一个新的水平。人体器官芯片市场现状
我们展示了多器guan肠肝MPS-TL6,由MPS器官芯片平台英国CN-Bio的PhysioMimix多器guan设备控制,可以概括抗yan药双氯芬酸的药代动力学。PHHs在肝脏MPS的3D工程支架中培养,然后加入肠MPSTranswells孔,后者是肠上皮细胞和杯状细胞的混合物,形成屏障。在给药实验期间,肝功能标志物CYP3A4、白蛋白和尿素维持在MPS-TL6中。肠屏障的完整性也通过TEER测量得到了证实。双氯芬酸被添加到肠器官芯片Transwells的顶端,在那里它通过屏障渗透,主要由肝脏代谢。我们证明了肠道屏障对双氯芬酸的生物利用度的影响,以及随后通过PHHs消除。通过在MPS-TL6中培养单个和多个器guan的组织模型,我们可以评估肝脏、肠道和联合培养时对代谢产物产生的贡献。值得注意的是,在共培养的肠-肝MPS中产生的代谢物水平较高,大于单个器guan器官芯片的总和,表明器guan-器guan串扰促进组织功能。肝脏器官芯片资讯与2D和3D细胞培养相比,由于器官芯片的采用率激增,北美在全球器官芯片领域占据主导地位。
我们评估了一种英国CN-Bio的微生理系统(MPS),也称为器官芯片(OOC),其体外肝脏模型是否可用于了解肝脏毒性的详细机制方面。MPS先前已被证明可在液流状态下维持高度功能性的3D肝脏微组织长达4周,这可能使其非常适合评估DILI。我们使用了两种抗糖尿病的噻唑烷二酮类药物,曲格列酮(获得市场批准,但后来因DILI而撤销)和吡格列酮(批准的药物,但已知具备DILI风险)以评估MPS是否可检测急性和慢性毒性。这两种化合物的DILI通常很难使用标准的体外肝脏分析实验和体内临床前模型进行检测。对于每种化合物,进行一系列功能性肝脏特异性终点(包括临床生物标记物)的浓度反应分析,以生成EC50曲线。对功能性肝脏特异性终点进行分析,以从MPS中创建一个独特的机理的“肝毒性特征”,以证明其评估新型药物的人类DILI风险的能力。
器官芯片(OOC)模型可以作为单个系统或模拟器guan相互交流的连接单元存在。MPS建立通过传统二维实验使用的概念上,并包括改善生理相关性的设计特征。器官芯片模型和其他MPS的应用程序多种多样-就像它们的制造和设计方法一样。已为大多数组织类型开发了类器guan,器官芯片模型和其他MPS,并提供了前所未有的进行毒性测试,个性化药物以及PK/PD和疾病机制研究的机会。考虑到它们在药物开发中的重要性,已大力致力于开发吸收和代谢模型。英国CNBio的Physiomimix器官芯片正是基于实现此远大目标而应运而生。器官芯片问世的意义在于弥补了传统的临床前动物模型无法真实反映人体对药物药效和毒性的真实反映的空缺。
鉴于I期试验中只有十分之一的临床前候选药物可能会获得市场认可,因此迫切需要更好的临床成功预测指标。由于药代动力学和药效学(PK/PD)的物种差异,体外模型过于简化以及对基本病生理的了解不足,将体外研究的结果转化为体内情况仍然是一个挑战。终止通常归因于动物研究中发现的安全问题,可以通过更准确地预测吸收,分布,代谢和排泄(ADME)谱来很大程度地减少。尽管2D单层细胞培养实验和动物模型已深深地嵌入到药物基础设施中,但仍然存在明显的差距,效率低下和不准确之处,因此需要新的替代和补充研究模型。在生物工程和细胞生物学的交叉中,存在着一种新的发现和开发药物的方法,人们正在寻求这种新方法来克服众所周知的低临床成功率。微生理系统(MPS),也即器官芯片系统是一类新兴的体外模型,有望通过在研发的关键阶段提供可靠的生理相关数据来加快药物开发。英国CN Bio的Physiomimix器官芯片正是基于实现此远大目标而应运而生。器官芯片因在预测人体对新型药物反应的建模、测试等方面的极大前景,逐渐成为科研界的研究热点。肝脏器官芯片技术
器官芯片的工作原理是什么?人体器官芯片市场现状
我们所有的微生理(MPS)耗材板与CNBioInnovations开发的PhysioMimix桌面型器官芯片系统配套使用。MPS耗材板的每个孔都是隔离的液流系统,可用于同时进行多个平行的实验。PhysioMimix器官芯片允许科学家在整个实验过程中取样进行分析,提供数据和实验进度的实时监控。监测包括生物标记物分析、细胞形态可视化成像、细胞迁移和蛋白质标记物定位;但重要的是,实验可以继续进行。PhysioMimix器官芯片支持使用微流体将两个或多个组织系统连接起来的使用案例。这类实验提供了非常有价值的数据,可揭示多个器guan如何相互作用和对刺激的反应。人体器官芯片市场现状
上海曼博生物医药科技有限公司是一家生物医药科技(人体干细胞、基因诊断与zhiliao技术开发和应用除外)领域内的技术开发、自有技术转让,并提供相关的技术咨询和技术服务;计算机软件的开发、设计、制作(音像制品、电子出版物除外)、销售自产产品;实验室试剂及耗材(药品、危险品除外)、化工原料及产品(除危险化学品、监控化学品、烟花爆竹、民用baozha物、易制毒化学品)、仪器仪表、机械设备、电子设备、塑料制品、玻璃制品、办公用品、电子产品的批发、进出口、佣金代理(拍卖除外)。【依法须经批准的项目,经相关部门批准后方可开展经营活动】的公司,是一家集研发、设计、生产和销售为一体的专业化公司。曼博生物深耕行业多年,始终以客户的需求为向导,为客户提供***的血小板裂解液,WB自动孵育系统,微流控器官芯片,蓝牙无线标签机。曼博生物继续坚定不移地走高质量发展道路,既要实现基本面稳定增长,又要聚焦关键领域,实现转型再突破。曼博生物始终关注医药健康市场,以敏锐的市场洞察力,实现与客户的成长共赢。
器官芯片应用的机会在于疾病建模和表型筛选,以帮助识别和排序新的和已知的(包括孤儿药和可用于重新用途的...
【详情】器官芯片模型的可用性为理解人类疾病的发病机制提供了大量机会,并为筛选药物提供了潜在的更好模型,因为这...
【详情】器官芯片应用的机会在于疾病建模和表型筛选,以帮助识别和排序新的和已知的(包括孤儿药和可用于重新用途的...
【详情】英国CNBio的PhysioMimix器官芯片可在一系列培养条件下进行先进的长时间体外肝脏培养以及进...
【详情】英国CNBio的PhysioMimix器官芯片可在一系列培养条件下进行先进的长时间体外肝脏培养以及进...
【详情】器官芯片模型的可用性为理解人类疾病的发病机制提供了大量机会,并为筛选药物提供了潜在的更好模型,因为这...
【详情】英国CNBio的PhysioMimix器官芯片可在一系列培养条件下进行先进的长时间体外肝脏培养以及进...
【详情】