DLS使用由于粒子的布朗运动而产生的波动散射光的强度来估计外泌体颗粒的大小分布及其zeta电位。DLS样品制备方便,只需要简单的过滤,测量速度较快,需要的样品体积较少。但由于动态光散射技术是基于光强测量,散射光的强度与粒径的六次方成正比,使得当测量多种粒径的混合悬浮液时,通常会偏向于检测较大粒径产生的散射光,比较难检测到较小颗粒。所以DLS不适合对粒径分布较宽的外泌体样本的测量,只适合尺寸较为均一的外泌体样本,并且无法测量样品中外泌体的浓度。外泌体作为一个新型的研究热点,由于它在体内存在的普遍性和获取的便捷性。外泌体的形成过程

外泌体是指包含了复杂RNA和蛋白质的小膜泡(30-150nm),现今,其特指直径在40-100nm的盘状囊泡。1983年,外泌体初次于绵羊网织红细胞中被发现,1987年Johnstone将其命名为“exosome”。多种细胞在正常及病理状态下均可分泌外泌体。其主要来源于细胞内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中。所有培养的细胞类型均可分泌外泌体,且外泌体天然存在于体液中,包括血液、唾液、尿液、脑脊液和乳汁中。有关他们分泌和摄取及其组成、“运载物”和相应功能的精确分子机制刚刚开始研究。外泌体目前被视为特异性分泌的膜泡,参与细胞间通讯,对外泌体的研究兴趣日益增长,无论是研究其功能还是了解如何将其用于微创诊断的开发。外泌体质谱免疫印迹或蛋白质印迹是分析外泌体较常用的方法之一,其原理是外泌体上特异性抗原与抗体结合。

透射电子显微镜(TEM)和扫描电子显微镜(SEM)是用于评估外泌体形态、大小和表型的的两种常见的电子显微镜。SEM和TEM均使用电子束产生高分辨率的亚微米颗粒放大图像,以区分外泌体与残留在样品中相似大小的非外泌体颗粒,该方法还可用于检查样品的纯度。TEM与SEM之间的区别在于检测电子类别,在SEM中,电子与样品中的粒子相互作用时会发生散射,捕获并检测散射的电子,从而生成粒子图像。但是,在TEM中,不与粒子相互作用的电子穿过样品,并使用荧光屏进行检测。电子显微镜下外泌体大小不一,通常呈茶托样的圆形或椭圆形。采用电子显微镜检测外泌体时对样品的预处理和制备要求较高,外泌体的提取方法和品质会对电镜结果造成影响;另外样品的准备阶段比较复杂,不适合进行大量快速的测量;而且由于样本经过了干燥、固定以及冷冻等预处理和制备过程,对生物样本的结构会造成一定的破坏,从而影响观察的效果,无法准确测量外泌体浓度。
AFC自动收集器是将qEV分离法这一过程自动化的仪器,将用来收集外泌体样本的微量离心管放置在AFC的中间转盘内,根据称重精确测量流体体积,可精确的测量到样品中每一个液滴的重量并精确测量总重量。将在空隙体积之前从qEV柱洗脱的流体收集到AFC转盘的单独中心孔中并送至废液桶,避免将不需要的空隙部分收集到微量离心管中。在提取期间,当达到设定的提取体积后,转盘会自动旋转到下一个微量离心管继续收集,到收集完成后自动停止。微滴式数字PCR技术不佳有效提高了核酸分子的扩增效率,而且由于采用微滴计数的方法进行定量,可以不依赖与RT-PCR的荧光信号和Ct值,对所测样品中的核酸分子进行一定定量。外泌体可以包含不同类型的细胞表面蛋白、细胞内蛋白、RNA、DNA、氨基酸和代谢物。

外泌体的来源与特征:外泌体是一种存在于细胞外的多囊泡体,通过细胞内吞泡膜向内凹陷形成,其大小均一,直径为40-100nm,密度为1.10-1.18g/mL。外泌体可由间充质干细胞、淋巴细胞和肉瘤细胞等多种类型细胞主动分泌释放。外泌体内主要含有核酸、蛋白质和脂质等,可作为疾病诊断标记物、调控靶细胞功能、参与细胞生物学活动等。例如:含有miR-140-5p的滑膜间充质干细胞来源外泌体(SMSC-Exo影响软骨组织再生;骨髓间充质干细胞来源外泌体携带的miR-196a可调节成骨细胞分化促进大鼠颅骨缺损的骨再生。外泌体的提取的方式:密度梯度离心法。北京CD81外泌体慢病毒
疾病的进展和对诊疗的反应可以通过外泌体的多组分分析来确定。外泌体的形成过程
外泌体分离的主要挑战之一是消除纳米级污染物,包括干扰外泌体标志物解析的游离核酸和脂蛋白。超速离心是目前分离外泌体的主要技术。尽管如此,它仍难以符合临床应用所需的标准,主要是由于该方法得到的外泌体纯度不足,产量较低,完整性欠佳且分离纯化操作耗时长。其他方法,例如基于聚乙二醇(PEG)的沉淀,磷脂酰丝氨酸亲和捕获,尺寸排阻色谱法和膜亲和捕获,近年来已经出现在特定的应用中,但是只适用于特定场景。近来,非对称流场-流分离方法已被用于从细胞和瘤子培养基中高分辨率地分选EV亚群,但其通量受到繁琐的样品制备程序的影响。单一分析耗时的过程也限制了其普遍的应用。因此,目前亟需开发创新技术以提高外泌体分离纯化的效率,纯度,产量,速度和耐用性。基于超滤的技术提供了潜在的有前途的替代方法,但它们也有缺点。在切向流过滤中,使进料流平行于多孔膜流动,以避免堵塞。然而,尽管已实现使用切向流过滤从大量条件细胞培养基中浓缩外泌体,但受制于其一次性模块的成本高,高剪切应力,难以处理小体积样品等因素而难以应用于临床分析。外泌体的形成过程
上海宇玫博生物科技有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在上海市等地区的医药健康中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,上海宇玫博生物科技供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!