简单来说,生活中除了我们常见的固体和液体,本次实验制作的这种介于这两者之间“吃软不吃硬”的物质,就是非牛顿流体。非牛顿流体,指的是介于液体和固体之间的物质。它的特性是“吃软不吃硬”,当表面受到压力时,会开始变硬,具备一定的固体特性。当表面没有压力时,又非常柔软,和液体一样。正是由于这种物质的特性,“轻功水上漂”成为了可能。当然,在动物界,能够实现水上漂的也有不少。很多的小型昆虫都拥有这样的绝技,其中水黾就是水上漂的高手。水黾腿的表面可以分泌出一层蜡状物质,这种物质可以使得水的表面张力变大。正是借助着水黾自身脚的特殊结构和分泌的物质,水黾才能够安然地站在水面上,并且能够实现在水面的滑行,奔跑,甚至在水面上跳跃。流体静止状态下其作用面上*能够承受法向应力。上海电缆卷筒流体厂家
流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。欧拉方程考虑的流体是理想流体。根据牛顿内摩擦定律,当流体黏滞性很小或相对运动的速度不大时,流体的切应力就很小,在这种情况下可以忽略黏滞性对流体运动的影响,而把实际流体运动视为理想流体运动。实际上,并不存在理想流体,即使像水和空气这样黏滞性较小的流体,在有些流区,如固体边界附近,其黏滞性也是不能忽略的。广东软管流体元件分类流体融入到字体设计当中去,成为字体中的流体设计。
曾有研究人员将高传热性能的Cu-水纳米流体作为换热工质引入射流技术,测试了不同纳米粒子体积份额的Cu-水纳米流体(平均粒径25nm)射流冲击传热特性。结果表明,在水射流介质中添加纳米粒子,可增强射流系统的散热冷却能力。例如,3.0%粒子体积份额的纳米流体射流换热系数比水提高了52%。Kulkarni等人在50%浓度的乙二醇水溶液里掺加Al2O3纳米粒子,作为柴油发电机夹套的冷却工质,明显提高了冷却效果。Al2O3纳米粒子体积浓度6%的纳米流体可以将对应于乙二醇水溶液的78.1%换热效率提高到81.1%。而Tzeng等人分别将CuO和Al2O3纳米粒子掺加到冷却机油中,以提高四轮驱动汽车动力传递系统的冷却效率,避免过高的热应力产生,终也取得了良好的效果。
20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加明显。如今来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和生产的需要,液体动力学等学科也有很大进展。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。
19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。流体只有在运动状态下才能够同时有法向应力和切向应力的作用。山东电缆卷筒流体技术
由于流动速度较快、流体来不及热传导等原因,常可以忽略导热性。上海电缆卷筒流体厂家
流体是与固体相对应的物体形态,是液体和气体的总称,它的基本特征是没有一定形状和具有流动性。其流动行为由粘度决定,粘度越低越容易流动。流体在静态时无磁性吸引力,当外加磁场作用时,才表现出磁性,正因如此,它才在实际中有着多的应用,在理论上具有很高的学术价值。用纳米金属及合金粉末生产的磁流体性能优异,可多应用于各种苛刻条件的磁性流体密封、减震、医疗器械、声音调节、光显示、磁流体选矿等领域。用磁流体代替液力偶合器中的液压力,效果应该会更好。上海电缆卷筒流体厂家