电网侧储能国民经济评价及财务分析还需要结合实际工程情况,兼顾定性和定量分析方法,以期在实践中找到有效的盈利点,为促进电网侧储能的良性发展提供支撑。潜热储能技术是利用储能介质液相与固相之间的相变时产生的熔解热将热能储存起来的。实际应用的潜热储能介质,有十水硫酸钠(化学式是Na2S04·10H20)、五水硫代硫酸钠(化学式是Na2S04·5H20)和六水氯化钙(化学式是CaCl2·6H20)等。该技术的特点是在低温下储能,具有较高的储能量密度,可在一定的相变温度下取出热量,但是储能媒介物价格昂贵,容易腐蚀,有的介质还可能产生分解反应,储存装置也较显热型复杂,技术难度较大。储能是用来储存或者是释放其中的热量。天津电化学储能系统生产厂家
从发电侧的角度看,储能的需求终端是发电厂。由于不同的电力来源对电网的不同影响,以及负载端难预测导致的发电和用电的动态不匹配,发电侧对储能的需求场景类型较多,包括能量时移、容量机组、系统调频、备用容量、可再生能源并网等六类场景。能量时移是通过储能的方式实现用电负荷的削峰填谷,即发电厂在用电负荷低谷时段对电池充电,在用电负荷高峰时段将存储的电量释放。此外,将可再生能源的弃风弃光电量存储后再移至其他时段进行并网也是能量时移。能量时移属于典型的能量型应用,其对充放电的时间没有严格要求,对于充放电的功率要求也比较宽,但是因为用户的用电负荷及可再生能源的发电特征导致能力时移的应用频率相对较高,每年在300次以上。河南风电储能系统生产厂家储能用于提升分布式电源汇聚能力。
压缩空气储能电站(CAES)是一种调峰用燃气轮机发电厂,主要利用电网负荷低谷时的剩余电力压缩空气,并将其储藏在典型压力7.5MPa的高压密封设施内,在用电高峰释放出来驱动燃气轮机发电。对于同样的输出,它消耗的燃气要比常规燃气轮机少40%。压缩空气储能电站建设投资和发电成本均低于抽水蓄能电站,但其能量密度低,并受岩层等地形条件的限制。压缩空气储能电站可以冷启动、黑启动,响应速度快,主要用于峰谷电能回收调节、平衡负荷、频率调制、分布式储能和发电系统备用。压缩空气常常储存在合适的地下矿井或者岩洞下的洞穴中。第1个投入商业运行的压缩空气储能是1978年建于德国Hundorf的一台290MW机组。随着分布式能量系统的发展以及减小储气库容积和提高储气压力至10-15MPa的需要,8-12MW微型压缩空气储能系统称为关注焦点。
紧缩空气储能(CAES):紧缩空气蓄能是运用电力系统负荷低谷时的剩下电量,由电动机股动空气紧缩机,将空气压入作为储气室的密闭大容量地下孔洞,当系统发电量缺少时,将紧缩空气经换热器与油或气混合燃烧,导入燃气轮机作功发电。飞轮储能发电技术是一种新型技术,它与电力网连接实现,电能的转换。从国民经济评价角度,电网侧储能具有良好的外部性,针对具体的电网侧储能项目,可设定假定参数,开展面向电力系统效益的财务分析,为电网侧储能投资、建设、可持续发展路径以及市场化机制和政策的建立提供参考。据报告统计介绍,全球储能方向所发表的文章主要在锂离子电池和储热两个方向。
储能系统的投资费用相对要比建设一座高峰负荷厂低,尽管储能装置会有储存损失,但由于储存的能量是来自工厂的多余能量或新能源,所以它还是能够降低燃料费用的。另一种是由于一次能源和能源转换装置之类的原因引起的,则储能系统的任务则是使能源产量均衡,即不但要削减能源输出量的高峰,还要填补输出量的低谷。储能主要包括热能、动能、电能、电磁能、化学能等能量的存储,储能技术方法见表1.5。储能技术的研究、开发与应用主要是以储存热能、电能为主,普遍应用于太阳能利用、电力的“移峰填谷”、废热和余热的回收以及工业与民用建筑和空调的节能等领域。显热储能技术是通过加热储能介质提高其温度,而将热能储存其中。常用的显热储能材料有水、土壤和岩石等。在温度变化相同的条件下,如果不考虑热损失,那么单位体积的储热量水比较大,土壤其次,岩石比较小。世界上已有不少国家都对这些储热材料进行了试验和应用。就目前来说,这是一种技术比较成熟、效率比较高、成本又比较低的储能方法。储能可以利用可逆分解反应、有机可逆反应和氢化物化学反应三种技术实现。北京储能产品费用
超导磁储能可以满足输配电网电压支撑、功率补偿、频率调整、提高系统稳定性和功率输送能力等。天津电化学储能系统生产厂家
电化学储能是近年来发展迅速的储能类型,主要包括锂离子电池储能、铅蓄电池储能和液流电池储能;其中锂离子电池具有循环特性好、响应速度快的特点,是目前电化学储能中主要的储能方式。其他储能方式包括超导储能和超级电容器储能等,目前因制造成本较高等原因应用较少,建设有示范性工程。储能主要应用于电网输配与辅助服务、可再生能源并网、分布式及微网以及用户侧各部分。相变储能复合材料在建筑领域中一个很有前景的应用方式是将相变材料与现存的通用多孔建筑材料复合。天津电化学储能系统生产厂家
通信设备潜在问题:电信行业所使用的设备承受着环境温度迅速波动的影响,同时还会接触各种颗粒,并始终暴露于风、雨、阳光照射等各种气候条件下。例如,安装了有源电子器件的塔顶天线等设备在工作时,热量会在设备壳体内部积聚。这将导致压力增加,使得壳体密封条承受更大的应力。另外,一次突如其来的暴雨或强风可能导致气温骤降,随之在设备壳体内部形成200 mbar(3 psi)甚至更大的真空,这同样将使壳体密封条承受更大的应力。如果壳体内外压力不能实现平衡,外部环境中的水、潮气、灰尘和污物便会通过密封缝隙进入壳体内部。这有可能对通信设备的性能产生不良影响,造成更多的维修工作或更大的返修成本。解决方案:通过不断透气...