为什么电池在正常使用或者长时间不使用会出现鼓包的现象呢?在充放电的过程中出现鼓包的现象有两种:一.过充导致的鼓包。同时过度充电会导致正极材料里的锂原子全部跑到负极材料里面,导致正极原本饱满的栅格发生变形垮塌,这也是锂电池电量下降的一个主要原因。在这个过程中,负极的锂离子越来越多,过度堆积使得锂原子长出树桩结晶,使得电池发生鼓胀。二.过放导致的鼓包。在液态锂离子电池S次充放电过程中,电极材料与电解液在固液相界面上发生反应,形成一层覆盖于电极材料表面的钝化层。形成的钝化层膜能有效地阻止电解液分子的通过,但Li+却可以经过该钝化层自由地嵌入和脱出,具有固体电解质的特征,因此这层钝化膜被称为“固体电解质界面膜”(solidelectrolyteinterface),简称SEI。SEI膜对负极材料会产生保护作用,使材料结构不容易崩塌,并且可以增加电极材料的循环寿命。SEI膜并非一成不变,在充放电过程中会有少许的变化,主要是部分有机物会发生可逆的变化。电池过度放电后使得SEI膜发生可逆性破环,保护负极材料的SEI破坏后使得负极材料崩塌,从而形成鼓包现象。锂电池保护板是锂电池不可缺少的组成部分。宁波智能电源保护板工艺
锂电池保护板与电池管理系统BMS的异同。锂电池保护板与电池管理系统都是对锂电池起保护作用的。它们之间的区别在于:1.锂电池保护板是以IC、MOS管和电阻、电容元件组成的,是锂电池的重要元件。电池管理系统可以编辑且自带电池管理软件,相对来说更加智能,等同于锂电池的大脑,起管控作用。2.锂电池保护板在3C锂电池和动力电池领域都有着重要的作用,电池管理系统则在动力电池领域中应用。3.电池管理系统相对于电池保护板更好操作,但是在低温中的性能不稳定。江西户外电源保护板系统保护板系统主要应用在二次电池上,尤其对于目前主流的使用锂离子电池的电动新能源汽车尤为重要。
电子设备通常用的是聚合物电池和锂电池,但是聚合物电池容易鼓包,随着锂离子电池的出现,由于其能量密度高,充电效率高,而且对环境“友好”,故得到制造商的垂爱,但是用锂电池必须对过压和过流进行检测,以保护锂离子电池,不然多次过放会引起电池寿命缩短。锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般土20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。
锂电池保护板同口是指充电和放电用同一个接口,也就只用2根线。分口是指充电和放电是分开的,要3根线。同口的缺点是要求保护板上充电控制和放电控制的MOS一摸一样,放电时电流会经过充电控制MOS,这样就增加了成本、内阻和热量。由于一般情况下电池放电电流要比充电电流大很多,分口充电控制MOS就可以选用较小电流的MOS,放电充电是互不影响的,缺点是要多一根线,有些场合不适合使用。同口的缺点是要求保护板上充电控制和放电控制的MOS一摸一样,放电时电流会经过充电控制MOS,这样就增加了成本、内阻和热量。由于一般情况下电池放电电流要比充电电流大很多,分口充电控制MOS就可以选用较小电流的MOS,放电充电是互不影响的,缺点是要多一根线,有些场合不适合使用。锂电池保护板的基础知识及常见不良分析。
保护板电芯类型要选对!首先是,磷酸铁锂和三元等不同的电芯和保护板是不能搭配使用的,电芯和保护板要一致,这是电压的角度。除此之外,保护板的保护参数也应该和用电器的功率进行匹配,主要是从电流的角度来考虑。那从细的方面来讲,保护板的参数如何选择呢?我们先从电压的角度来说。锂电池是非常危险的东西,过充过放都有可能导致意外情况的发生。因此,在电池包内部,保护板需要监控每一串电芯的电压,当所有电芯中只要有一串电压低于或者高于设定电压,保护板就需要进行保护。这个地方就出现了我们保护板关键的一组参数,充电截止电压和放电截止电压。保护板在检测时为了避免干扰,确保数据准确,一般都有延时,不会在检测到以后立即就保护,因此又有一组充电保护延时和放电保护延时参数。另外,当保护板保护以后,如果异常情况消失,保护板还应该恢复正常。储能电池保护板和动力电池保护板的这些差异,你知道吗?广西平衡保护板功能
锂电池保护板系统,你知多少?宁波智能电源保护板工艺
锂电池保护板包括IC,MOS管,电阻,电容以及PTC,NTC,PUSE,ID,等等,在保护板正常的时候,VDD为高电平,VSS,VM为低电平,DO,CO为高电平,当VDD,VSS,VM任何一个有数据变化的时候DO或者CO的电平就会发生变化的。6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到DO端由高电平变为低电平时VM-VSS间电压。7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压。8、充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压。9、通常工作时消耗电流:在通常状态下的,流以VDD端子的电流(IDD)即为通常工作时消耗电流。10、过放电消耗电流:在放电状态下的,流经VDD端子的电流(IDD)即为过流放电消耗电流。宁波智能电源保护板工艺
深圳众鑫凯科技有限公司成立于2012-04-24年,在此之前我们已在锂电池保护板,储能逆变器,锂电池BMS,清洁类家电控制系统行业中有了多年的生产和服务经验,深受经销商和客户的好评。我们从一个名不见经传的小公司,慢慢的适应了市场的需求,得到了越来越多的客户认可。公司主要经营锂电池保护板,储能逆变器,锂电池BMS,清洁类家电控制系统,公司与锂电池保护板,储能逆变器,锂电池BMS,清洁类家电控制系统行业内多家研究中心、机构保持合作关系,共同交流、探讨技术更新。通过科学管理、产品研发来提高公司竞争力。公司秉承以人为本,科技创新,市场先导,和谐共赢的理念,建立一支由锂电池保护板,储能逆变器,锂电池BMS,清洁类家电控制系统**组成的顾问团队,由经验丰富的技术人员组成的研发和应用团队。深圳众鑫凯科技有限公司依托多年来完善的服务经验、良好的服务队伍、完善的服务网络和强大的合作伙伴,目前已经得到能源行业内客户认可和支持,并赢得长期合作伙伴的信赖。